簡易檢索 / 詳目顯示

研究生: 張倍芝
Chang, Pei-Chih
論文名稱: 拜香燃燒產物中水溶性金屬之生物毒性研究
A study on the Cytotoxicity of Water-Soluble Metal species from incense emission
指導教授: 林達昌
Lin, Da-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 拜香懸浮微粒水溶性金屬生物毒性反應性氧化物種
外文關鍵詞: incense, particles, Water-Soluble Metal, cytotoxicity, ROS
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燒香祭拜祖先與敬奉神明一直是華人社會中相當重視的活動,除了各大、小節慶,及各地大、小廟宇活動外,許多民眾在家中亦有燒香祭祖習慣,拜香於燃燒時會產生含有細小且肉眼不易見的氣膠與微粒,而此類物質對人體呼吸道與肺部健康皆有影響。過去研究多針對燃燒拜香排放氣膠微粒之粒徑、燃燒時所產生之多環芳香烴(PAHs)物種及PAHs所造成之生物毒性進行探討。
    有別於一般細菌生物毒性如安姆氏測試、Microtox等,本研究使用人體肺部細胞組織為基礎之生物毒性測試法進行水溶性萃取物毒性暴露測試;此外使用ICP-OES進行金屬含量分析前所使用之傳統微波消化萃取法所得之金屬含量,與進入人體內因為被體液溶出而真正暴露於肺部的金屬含量差異很大(前者為總量,後者為真正暴露量),因此在針對金屬分析部分的萃取方式,本研究則以模擬人體支氣管濕潤環境滲透壓與PH值相似的磷酸鹽緩衝溶液(phosphate-buffered saline,PBS),進行水溶性金屬之萃取,與傳統使用硝酸與鹽酸進行之微波消化程序不同。
    本研究選取市面上常見之兩種台灣製拜香各三種尺寸,分別放入實驗箱內燃燒,使用和人體支氣管濕潤環境滲透壓與PH值相似之PBS進行萃取,採樣濾紙萃取液以ICP-OES分析萃取液中金屬含量;再利用正常人類肺部支氣管上皮細胞株(Beas-2B)進行細胞存活率測試(MTT Assay)、基因毒性分析(Comet Assay)與細胞氧化性壓力之生物毒性測試,深入探討燃燒拜香排放微粒之水溶性物質與其生物毒性之間的關連。
    實驗結果顯示,拜香粗細程度會造成燃燒時溫度不同,而不同拜香材料也會造成溫度的差異,溫度高低依序TS3>TS2>TS1 , TL3>TL2>TL1;細胞存活率的實驗結果顯示,因粗細不同所造成的毒性並無太大差異,即燃燒溫度與生物毒性之間並無明顯相關,但不同拜香種類所造成的毒性效應則有明顯差異,兩種拜香之細胞毒性高低為TS>TL;若更進一步分析暴露細胞中之萃取液金屬成份,本研究發現香種TS的Zn2+含量較高,再配合反應性氧化物種(reactive oxygen species,ROS)之測試結果,結果顯示造成細胞凋亡的原因是來自於Zn2+於氧化過程中所產生之反應性氧化物種,導致細胞氧化性壓力增加所造成。

    Burning of Chinese incense for worshipping ancestors and divinity has been important activity in Chinese community. Despite of every festival and activities hold in temples, incense is burned in home as religious daily rituals. Combustion of incense will emit small and unnoticeable aerosols and particles which affect the health of respiratory passages and human lungs. Previous research works mainly focus on the discussion about size of suspended particulate, types of polycyclic aromatic hydrocarbons (PAHs) and cytotoxicity of PAHs during emission of aerosol when burning Chinese incense.
    In this research, human lung cells were used as basic cell culture in test of cytotoxicity on water soluble metal species in exposure assessment other than tests such as Ames test and Microtox. Two analytical methods in detecting metal content exposed to human lungs were used. Significant difference in metal content was shown between traditional microwave digestions and extraction of metals using phosphate-buffered saline (PBS). PBS extraction could simulate osmolarity and pH value in respiratory passages and therefore represented realistic exposure metal content in lungs leached from body fluid. It was used as extraction procedure on metal in this study.
    Two types of Taiwanese made incense with three different lengths respectively were chosen for evaluation of water soluble metal species emitted from burning Chinese incense on cytotoxicity. The incense was burned in experimental chamber and samples using PBS extraction. Sampled filtrate then carried out ICP-OES measurement on metal content. Ordinary human cell in bronchus, known as Beas-2B, was used to conduct cytotoxicity assay including MTT Assay, Comet Assay and oxidative stress.
    The results derived the thickness and different types of incense would affect the temperature during combustion. The burning temperature was in the order of : TS3 > TS2 > TS1 and TL3 > TL2 > TL1. From cell viability assay, the thickness of incense did not cause significant influence of cytotoxicity towards human cell in bronchus. However, different types of incense revealed significant results with TS having higher cell culture cytotoxicity than TL. Further analyzing extracted metal composition from exposed cell discovered TS contained high Zinc (Zn) content. Verified through reactive oxygen species assay, the results concluded cell death was mainly caused by the formation of reactive oxidative species when Zn was oxidized. The formation of such species increased cell oxidative stress and resulted cell death.

    總目錄 表目錄 VI 圖目錄 VII 第一章 前言 1 1-1 研究動機 1 1-2 研究目的及內容 2 第二章 文獻回顧 3 2-1拜香的相關介紹 3 2-1-1拜香的組成及原料特性 3 2-1-2拜香排放微粒特性 4 2-1-3拜香燃燒產物對人體之危害 12 2-2金屬的相關介紹 15 2-2-1 重金屬的特性 15 2-2-2 拜香原料及其燃燒生成物之金屬成分 16 2-2-3 重金屬毒性的相關研究 18 2-2-4 反應性含氧物種的相關研究 20 2-3生物毒性測試方法 22 2-3-1 體外暴露研究(In vitro study) 22 2-3-2 PBS萃取 22 2-3-3 彗星分析(Comet Assay) 23 2-3-4 MTT Assay 24 2-3-5 反應性含氧物種分析方法 24 第三章 實驗方法與步驟 26 3-1 實驗設計與規劃 26 3-2 採樣設計與規劃 28 3-2-1 採樣設備 28 3-2-2採樣設計 30 3-2-3 溫度測量 30 3-3採樣前之準備 32 3-3-1 樣品製備/調理 32 3-3-2 濾紙前處理 32 3-3-3 流量校正 32 3-4 樣品分析 33 3-4-1萃取 33 3-4-2 過濾 33 3-4-3 濃縮 33 3-5樣品之重金屬分析 33 3-5-1 萃取液中重金屬含量 33 3-5-2 微波消化 34 3-5-3 感應偶合電漿元子發射光譜儀(ICP-OES)分析 36 3-6 生物毒性分析 38 3-6-1 MTT Assay 38 3-5-2 彗星試驗 (Comet Assay) 43 3-5-3 ROS測定 47 第四章 實驗品質保證與品質控制 48 4-1重金屬分析程序之QA/QC 48 4-1-1 溶劑空白試驗 48 4-1-2程序空白實驗 48 4-1-3 重金屬標準品回收率測試 49 4-1-4 重金屬標準品檢量線之建立 50 4-1-5 重金屬重複分析 51 4-2多環芳香烴類化合物分析程序之 QA/QC 52 4-2-1 溶劑空白試驗 52 4-2-2 固相PAHs樣本空白試驗 52 4-2-3 採樣之空白試驗 52 4-2-4 方法偵測極限 53 4-2-5準確度及精密度建立 56 4-2-6滯留時間測試 56 4-2-7標準品檢量線之建立 57 4-3生物毒性分析程序之QA/QC 58 4-3-1實驗程序QA/QC準則及措施 58 4-3-2空白試驗 58 第五章 結果與討論 60 5-1 拜香燃燒之物理參數 60 5-1-1 拜香之燃燒情況 61 5-1-2 拜香燃燒之懸浮微粒排放係數 62 5-1-3 拜香之燃燒速率 64 5-1-4 拜香之香灰排放係數 65 5-1-5 拜香燃燒溫度 66 5-2 拜香中重金屬含量 68 5-2-1 拜香原料重金屬分析結果 68 5-2-2 萃取液中重金屬分析結果 70 5-3 拜香排放固相PAHs濃度分析 71 5-3-1 拜香微粒PAHs排放濃度 71 5-3-2 拜香微粒之BaPeq 72 5-4 細胞毒性測試 76 5-4-1 Zn離子之細胞存活率 77 5-4-2 拜香排放微粒之細胞毒性 78 5-5 基因毒性測試 81 5-5-1 Zn離子之基因毒性 82 5-5-2拜香排放微粒之基因毒性 84 5-6 鋅的氧化壓力 87 5-7 小結 90 第六章 結論 91 參考文獻 93

    英文部分
    Blanc, P., Wong, H., Bernstein, M. S., & Boushey, H. A., An experimental human model of metal fume fever. Ann Intern Med, 1991, 114,930-936.
    Butler, J.D., Crossley, P., “Reactivity of PAH Adsorbed on Soot Particles”, Atmospheric Environment, 1981, 15, p 91-94.
    Carter JD, Ghio AJ, Samet JM, Devlin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol,1997, 146,180-188.
    Cheng, Y.S., Bechtold, W.E., Yu, C.C. and Hung, I.F., "Incense smoke: characterization and dynamics in indoor environment," Aerosol Sci Technol., 1995,23, 271-281.
    Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE, An association between air pollution and mortality in six US cities. N Engl J Med, 329, 1753-1759.
    Donaldson, K., Stone, V., Borm, P.J., Jimenez, L.A., Gilmour, P.S.,Schins, R.P., Knaapen, A.M., Rahman, I., Faux, S.P., Brown, D.M., MacNee, W., Oxidative stress and calcium signaling in the adverse effects of environmental particles(PM10). Free Radic. Biol., 2003, 34, 1369-1382.
    Dye, J.A., Adler, K.B., Richards, J.H., Dreher, K.L., Role of soluble metals in oil fly ash-induced airway epithelial injury and cytokine gene expression. Am. J. Physiol., 1999, 277, 498-L510
    Fang GC, Chang CN, Chu CC, Wu YS, Pi-Cheng FP, Chang SC, Yang IL. Fine (PM2.5), coarse (PM2.5-10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere , 2003, 51, 983-991.
    Fuortes, L., & Schenck, D. Marked elevation of urinary zinc levels and pleural-friction rub in metal fume fever. Vet Hum Toxicol, 2000, 42,164-165.
    Folinsbee, L., Human health effects of air pollution, Environ Health Perspect, 1992, 100, 45-56.
    Goldsmith CA, Imrich A, Danaee H, Ning YY, Kobzik L. Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. Toxicol Environ Health, 1998, 54, 529-545.
    Ghio AJ, Thmomas P. Kennedy, Thmomas P. Kennedy, A. Richard Whorton. Role of Surface Complexed Iron in Oxidant Generation and Lung Inflammation Induced by Silicates, Lung Cell Mol Physiol, 1992, 7, 511-518.
    Ghio, A.J., Kim, C., Devlin, R.B. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am. J. Respir. Crit. Care. , 2000, 162, 981-988.
    Gavett, S.H., Madison, S.L., Dreher, K.L., Winsett, D.W., McGee, J.K., Costa, D. L., Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ. Res., 1997, 72, 162-72.
    Hartog, J.J., Hoek, G., Peters, A., Timonen, K.L., Ibald-Mulli, A., Brunekreef, B., Heinrich, J., Tiittanen, P., van Wijnen, J.H., Kreyling, W., Kulmala, M., Pekkanen, J., Effecdts of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease. The ULTRA study. Am. J. Epidemiol., 2003, 157, 613–623.
    Huang, Y.C., Ghio, A.J., Stonehuerner, J., McGee, J., Carter, J.D., Grambow, S.C., Devlin, R.B., The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal. Toxicol., 2003, 15, 327-42.
    Hsiao, M. C., Wang, H. P.,Yang, Y. W. EXAFS and XANES Studies of copper in a solidified Fly ash. Environ. Sci. Technol, 2000, 35, 2532-2535.
    Kawata K.,Tokoo H.,Shimazaki R., Okabe S..Classification of heavy-metal toxicity by numan DNA microarray analysis. Environ Sci Technol., 41, 3769-3774.
    Kadiiska, M.B., Burkitt, M.J., Xiang, Q.H., Mason, R.P., Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation. J. Clin. Invest.,1995, 96, 1653-7.
    Kehrer JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol , 1993, 23, 21-48.
    Löfroth, G., Stensman, C., Brandhorst-Satzkorn, M., “Indoor sources of mutagenic aerosol part: culate matter: smoking, cooking and incense buring” Mut. Res., 1991, 264, 21-28.
    Lung, S.C., Hu, S.C., Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks, Chemosphere, 2003, 50, 673–679.
    Merchant, J., & Webby, R. Metal fume fever: a case report and literature review. Emerg Med Fremantle, 2001, 13, 373-375.
    Nisbet, C., & LaGoy, P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Rugul. Toxicol. Pharmacol., 1992, 16, 290-300.
    Patricia S. Brocardoa, Pablo Pandolfoa, Reinaldo N. Takahashib, Ana L´ucia S. Rodriguesa, Alcir L. Dafrec, Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride, Toxicology , 2004, 207 , 283–291.
    Prahalad AK, Soukup JM, Inmon J, Willis R, Ghio AJ, Becker S, Gallagher JE. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol. Appl. Pharmacol., 2000, 158, 81-91 .
    Rasmussen, R.E., Mutagenic activity of incense smoke on salmonella typhimurium, Bull. Environ. Contam. Toxicol., 1987, 38, 827-833.
    Rylander, R., Essle, N., Donham, K., Bronchial Hyperreactivity among pig and dairy farmers, Am. J. Ind. Med., 1990, 17, 66-69.
    Salvador Mena, Angel Ortega, Jose M. Estrela, Oxidative stress in environmental-induced carcinogenesis, Mutation Research , 2009, 674, 36-44.
    Vallythan V, Shi X. The role of oxygen free radicals in occupational and environmental lung diseases, Environ Health Perspect, 1997, 105, 165-177.
    Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol., 2002, 184, 172-179.
    Yeh, K., Song, Z., Reznichenko, J., Jang, K.O., ”Alkali metal ions and their effects on smoldering and ignition of cotton upholstwey fabrics – A literature review” Journal of Fire Sciences, 1993, 11, 350-354.

    中文部分
    沈福銘,林澤聖,燃燒拜香導致重金屬汙染暴露之研究,元培科學技術學院醫是技術系及環境工程衛生系。
    高玫鍾,龍世俊,香客在寺廟中懸浮微粒曝露濃度之探討,中華公共衛生雜誌,第十九卷,第二期,138-143, 2000。
    蔡政男,拜香燃煙中PAHs 與 Nitrio-PAHs 之基因毒性探討,國立成功大學環境工程系,碩士論文,2004。
    胡竹君,拜香之煙及灰中多環芳香烃化合物之分析,國立清華大學原子科學研究所,碩士論文,1992。
    劉孟麟,香環燃煙中PAHs成份特徵與及毒性研究,國立成功大學環境工程系,碩士論文,2005。
    謝居憲,寺廟內部空氣中之PAHs成份及特徵之研究,國立成功大學環境工程系,碩士論文,1996。
    謝永昌,拜香氣膠中之PAHs之粒徑研究,國立成功大學環境工程系,碩士論文,2002。
    黃漢昇,添加金屬鹽類與抗氧化酵素對於拜香燃燒所排放汙染物之影響,國立成功大學環境工程系,碩士論文,2005。
    陳沛蓉,拜香、香煙及稻草燃燒產生微粒之細胞毒性研究,國立陽明大學環境衛生研究所,碩士論文,2004。
    楊定慈,健康拜香之研發:拜香燃煙生成微粒與氣態汙染物排放特性,國立台灣大學公共衛生學院環境衛生研究所,博士論文,2005。
    楊奇儒,低污染拜香研發:拜香主要成分對拜香燃煙特徵之影響,國立成功大學環境工程系,博士論文,2006。
    林嘉明,拜香原料然煙中多環芳香化合物之探討,國科會計畫報告,1996。
    鄭尊仁,奈米氧化鋅微粒健康風險評估與管理,國科會計劃報告,2007。
    空氣汙染防制專責人員訓練教材。

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE