| 研究生: |
洪智晟 Hung, Chih-Cheng |
|---|---|
| 論文名稱: |
熱蒸鍍法生長多孔ZnO及Zn2GeO4奈米線 Growth of porous ZnO and Zn2GeO4 nanowires by thermal evaporation |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 熱蒸鍍法 、Zn2GeO4奈米線 、多孔ZnO奈米線 |
| 外文關鍵詞: | porous ZnO nanowires, Zn2GeO4 nanowires, thermal evaporation |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩個部份,其一是分別將硫化鋅奈米線在空氣中氧化以及在銀的催化下熱蒸發硫化鋅粉末,來生成具多孔結構的氧化鋅奈米線。硫化鋅奈米線先藉由熱蒸鍍的方式熱蒸發硫化鋅粉末,在1100℃以及氬氣的氣氛下,隨後在空氣中退火並設定在不同的溫度,硫化鋅奈米線會分別在600-700℃下轉變成硫化鋅-氧化鋅的核-殼奈米線,以及700-750℃下會形成多孔結構的氧化鋅奈米線。較高的退火溫度或是較高的氧氣分壓氣氛會抑制氧化鋅中多孔結構的生成。而在1100℃下熱蒸發硫化鋅粉末可以在溫度750-800℃有沉積銀顆粒的矽基板上直接生成具多孔結構的氧化鋅奈米線而不需要進行退火的過程。由於二氧化硫高於氧化鋅的形成速率,以及在磊晶氧化鋅及硫化鋅介面的不相容結構,此兩種因素對於從硫化鋅奈米線模板在空氣中退火以及藉由銀催化的方式來生成多孔氧化鋅奈米線有相當的幫助,而藉由此兩種方式來生成多孔氧化鋅奈米線的機制將在本文被探討。另一部分則是探討氧分壓及矽基板上的銅膜對於熱蒸鍍法熱蒸發硫化鋅及鍺粉末在1100℃以及氬氣的氣氛下生長Zn2GeO4奈米線的影響。Zn2GeO4奈米線可以在氬氣中650-800℃下在純矽基板上生長,而鍍有銅的基板可以稍微促進Zn2GeO4奈米線的生長,並形成摻雜銅的Zn2GeO4奈米線。這兩種奈米線均是遵循自催化vapor-liquid-solid機制來生長。氧氣於氬氣中比例在3%的時候,會生成GeO2的顆粒而非Zn2GeO4奈米線,顯示若氧分壓較高的時候會促進GeO2的生長。摻雜銅的Zn2GeO4奈米線的PL訊號鋒要比Zn2GeO4奈米線的540nm往藍位移的方向移動15nm左右。
The growth of porous ZnO nanowires (NWs) by thermal oxidation of ZnS NWs in air and by the Ag catalyst via thermal evaporation of ZnS powder in Ar, respectively, was studied. The ZnS NWs were first synthesized by thermal evaporation of ZnS powder at 1100℃ in Ar. On subsequent annealing in air, the ZnS NWs transformed to porous ZnS-ZnO core-shell NWs and porous ZnO NWs at 600-700℃ and 700-750℃, respectively. Higher annealing temperature or oxygen partial pressure suppressed the formation of porous ZnO NWs. On Ag-coated Si substrates, porous ZnO NWs could directly grow at 750-800℃ by thermal evaporation of ZnS powder at 1100℃ in Ar without subsequent annealing. Two factors, the higher formation rate for SO2 than for ZnO and the incompatible structure at the interface of epitaxial ZnS and ZnO, are beneficial to the formation of porous ZnS NWs from ZnS templates on annealing in air or by the Ag-catalytic growth in Air. The mechanisms for the formation of porous ZnO NWs by the two methods were explored, respectively. Another part of this study focused on the effects of oxygen partial pressure and a Cu layer on Si substrates on the growth of Zn2GeO4 NWs by thermal evaporation of ZnS and Ge powders at 1100˚C in Ar. The Zn2GeO4 NWs could grow on the bare Si substrates at 650-800˚C in Ar, while the deposited Cu layer further enhanced the growth of Zn2GeO4 NWs, forming the Cu-doped Zn2GeO4 NWs. The growth of Zn2GeO4NWs and Cu-doped Zn2GeO4 NWs followed the self-catalyzed vapor-liquid-solid (VLS) process. In Ar/O2(3%), GeO2 particles instead of Zn2GeO4 NWs formed on the Si substrates, revealing that higher oxygen partial pressure in Ar enhanced the growth of GeO2. The photoluminescence (PL) peak of Cu-doped Zn2GeO4 NWs showed a blue shift of about 15 nm as compared with that, 540 nm, of undoped Zn2GeO4 NWs.
1. R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2. 馬振基, “奈米材料科技原理與應用”, 全華科技 (2003)
3. 盧永坤, “奈米科技概論”,滄海書局(2005)
4. B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)
5. R. Kubo, J. Phys. Soc. Jpn, 17, 975 (1962)
6. S. Iijima, Nature 354, 56 (1991)
7. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
8. Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
9. Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
10. Y. Saito, S. Uemura, Carbon 38, 169 (2000)
11. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
12. S.M. Lee, K.S. Park, Y.C. Chai, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee, Synth. Met. 113, 209 (2000)
13. R.T. Yang, Carbon 38, 623 (2000)
14. J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)
15. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
16. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384, 147 (1996)
17. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)
18. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
19. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001)
20. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
21. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
22. Y. Hao, G. Meng, C. Ye, and L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)
23. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
24. Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
25. P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
26. 張俊彥譯,施敏著,“半導體元件物理與製作技術” ,高立圖書有限公司
27. Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
28. D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
29. H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
30. S. Kodambaka, J Tersoff, M.C.Reuter,F.M.Ross, Science 316, 4 (2007)
31. G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal. 24, 137 (2003)
32. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
33. C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
34. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
35. M. Johnsson, Solid State Ionics 172, 365 (2004)
36. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
37. A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
38. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
39. P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
40. K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
41. B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
42. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
43. Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
44. S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
45. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
46. J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
47. T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
48. Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
49. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
50. T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater. 15, 3518 (2003)
51. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
52. K. M. Ryan, D. Erts, H. Olin, M. A. Morris, and J. D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
53. N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
54. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
55. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
56. C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
57. A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
58. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
59. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
60. H. W. Kim ,S. H. Shim, J. W. Lee, Physica E 37 (2007 163)
61. M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
62. M. Nagai, Electrochemical and Solid-State Lett. 10 (2) H43,(2007)
63. S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Crystal Growth 247 (2003) 357.
64. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
65. Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
66. F. M. Davidson, M, D. Lee, D. D. Fanfair, and B. A. Korgel, J. Phys. Chem. C 111, 2929 (2007)
67. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
68. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
69. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
70. X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
71. Y. Yao, S. Fan, Materials Letters 61 (2007 177)
72. J. Arbiol, B. Kalache, P. R. Cabarrocas, et al. Nanotechnology 18, 305606 (2007)
73. T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000)
74. Wang, V. Schmidt, S. Senz, U. Gosele, Nature Nanotech. 1, 186 (2006)
75. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L . R. Wallenberg, Nature Mater. 3, 677 (2004)
76. S.T. Lee, N. Wang, Y.F. Zhang, and Y.H. Tang, MRS Bull. 24, 36 (1999)
77. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J. Mater. Res. 14, 4503 (1999)
78. N. Wang, Y.H. Tang, Y.F. Zhang, C.S .Lee, and S.T. Lee, Phys. Rev. B 58, R16024 (1998)
79. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
80. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
81. T.S. Chu, R.Q. Zhang, and H.F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
82. R.Q. Zhang, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 635 (2003)
83. X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
84. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 345, 377 (2001)
85. H.Y. Peng, X.T. Zhou, N. Wang, Y.F. Zheng, L.S. Liao, W.S. Shi, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 27, 263 (2000)
86. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Adv. Mater. 13, 591 (2001)
87. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
88. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
89. J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
90. Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
91. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995)
92. X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett. 3, 93 (2003)
93. X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
94. H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel Chem. Mater. 17, 5705 (2005)
95. 汪建民等人, “材料分析”, 中國材料科學學會 (1998)
96. 郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap 5
97. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko,C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
98. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995
99. C. Li, G. J. Fang, Y. Y. Ren, Q. Fu, and X. Z. Zhao, J. Nanosci. Nanotechnol. 6, 1467 (2006)
100. B.X. Lin, and Z.X. Fu Appl. Phys. Lett. 79 943 (2001)
101. 余樹楨 "晶體之結構與性質", 渤海堂文化事業有限公司. P.255
102. B. P. Zhang, N. T. Binh, K. Wakatsuki, Nanotechnol. 15 S382 (2004)
103. J. F. Wang et al., Science 293, 1313 (2001)
104. X. F. Duan et al., Nature 409, 66 (2001)
105. M. H. Huang et al., Science 292, 1897 (2001)
106. Y. Cui, C. M. Lieber, Science 291, 851 (2001)
107. Y. Cui et al., Science 293, 1289 (2001)
108. Jih-Jen Wu, Sai-Chang Liu, Adv. Mater. 14(3), 215, (2004)
109. Jiangtao Hu, Teri Wang Odom, Acc. Chem. Res. 32, 435 (1999)
110. Peidong Yang, Haoquan Yan, Samuel Mao, Adv. Funct. Mater. 12(5), 323 (2002)
111. Xian-Hua Zhang, Su-Yuan Xie, J. Phys. Chem. B 107, 10114, (2003)
112. Chunya Geng, Yang Jiang, Yuan Yao, Adv. Funct. Mater. 14(6), 589 (2004)
113. J. Q. Hu, Q. Li, X. M. Meng, Chem. Mater. 15, 305, (2003)
114. Lionel Vayssieres, Karin Keis, Chem. Mater. 13(12), 4395, (2001)
115. C. X. Xu and X. W. Sun, Appl. Phys. Lett. 85(17), P.3878, (2004)
116. Z.W. Pan, Z,R, Dai, Z.L. Wang, Science 291, 1947 (2001)
117. P.X. Gao, Z.L. Wang, J. Phys. Chem. B 106, 12653 (2002)
118. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, H.J. Choi, Adv. Funct. Mater. 12, 323 (2002)
119. W.I. Park, D.H. Kim, S. W. Jung, G.C. Yi, Appl. Phys. Lett. 20, 4232 (2002)
120. X. D. Wang, J. Zhou, J. H. Song, J. Lin, N. S. Xu, Z. L. Wang, Nano. Lett. 6 2768 (2006)
121. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, Nanotechnology 17, 2567 (2006)
122. Q. Wan, Q. H. Li, Y. J. Chen, X. L. He, X. G. Gao, J. P. Li, and T. H. Wang, Appl. Phys. Lett. 84 3085 (2004)
123. S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, Nanotechnology 19, 175502 (2008)
124. J. Y. Park, D. E. Song and S. S. Kim, Nanotechnology 19, 105503 (2008)
125. C. C. Li, L. M. Li, Z. F. Du, H. C. Yu, Y. Y. Xiang, Y. Li, Y. Cai, and T. H. Wang, Nanotechnology 19, 035501 (2008)
126. J. B. K. Law and J. T. L. Thong, Nanotechnology 19, 205502 (2008)
127. L. Liao, H. B. Lu, M. Shuai, J. C. Li, Y. L. Liu, C. Liu, Z. X. Shen, and T. Yu, Nanotechnology 19, 175501 (2008)
128. S.Y. Bae, H. W. Seo, J. H. Park, H. N. Yang, and B.S. Kim, Chem. Phys. Lett. 376, 445 (2003)
129. X.R. Zhang, X.Y. Yuan, Y. Zhang, Q. Wei, G.W. Meng, and L.D. Zhang, Chem Lett. 34, 896 (2005)
130. Y.L. Wang, X.C. Jiang, and Y. N. Xia, J. Am. Chem. Soc. 125 16176 (2003)
131. C. X. Shan, Z. Liu, Z. Z. Zhang, D. Z. Shen, and S. K. Hark, J. Phys. Chem. B 110, 11176 (2006)
132. Y. H. Xiao, L. Li. Y. Li. M. Fang, and L. D. Zhang, Nanotechnology 16 671 (2005)
133. L. H. Cheng, L. Y. Zheng, G. R. Li, Q. R. Yin, and K. Jiang, Nanotechnology 19 075605 (2008)
134. S. Polarz, A. V. Orlov, F. Schth, and A. H. Lu, Chem. Eur. J. 13 592 (2007)
135. G. H. Ning, X. P. Zhao, J. Li, and C.Q. Zhang, Opt. Mater. 28, 385 (2006)
136. J. T. Jiu, K. Kurumada, and M. Tanigaki, Mater. Chem. Phys. 81, 93 (2003)
137. X. D. Wang, P. X. Gao, J Li, C. J. Summers, and Z. L. Wang, Adv. Mater. 14, 1732 (2002)
138. S.H. Wang, Q. J. Huang, X.G. Wen, X. Y. Li, and S. H. Yang, Phys. Chem. Chem. Phys. 4, 3425 (2001)
139. S. Itoh, H. Toki, K. Morimoto, and T. Kishino, J. Electrochem. Soc. 138, 1509 (1991)
140. X. Ouyang, A. H. Kitai, and T. Xiao, J. Appl. Phys. 79, 3229 (1996)
141. L. E. Shea, R. K. Datta, and J. J. J. Brown, J. Electrochem. Soc. 141, 2198 (1994)
142. T. Minami, T. Maeno, Y. Kuroi, and S. Takata, Jpn. J. Appl. Phys. Part2, 34, L684 (1995)
143. J. P. Bender, J. F. Wager, J. Kissick, B. L Clark, and D. A. Keszler, J. Electrochem. Soc. 147, 3148 (2000)
144. J. S. Lewis and P. H. Holloway, J. Eletrochem. Soc. 147, 3148 (2000)
145. L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, J. Electrochem. Soc. 151, H188 (2004)
146. Z. S. Liu, X. P. Jing and L. X. Wang, J. Electrochem. Soc. 154, H500 (2007)
147. G. Anoop, K. Mini Krishna and M. K. Jayaraj, J. Electrochem. Soc. 155, J7 (2008)
148. M. Y. Tsai, C. Y. Yu, C. C. Wang and T. P. Perng Crystal Growth & Design 8, 2264 (2008)
149. R. Stevens, B. F. Woodfield, J. Boerio-Goates, and M. K. Crawford. J. Chem. Thermodynamics, 36, 349 (2004)
150. T. Xiao, A. H. Kitai, G. Kiu, and A. Nakua, SiD Dig. 28, 415 (1997)
151. J. Sato, H. Kobayashi, K. Ikarashi, N.Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B 108, 4369 (2004)