| 研究生: |
陳淑儀 Chen, Shu-Yi |
|---|---|
| 論文名稱: |
921地震對台灣股價是否有非對稱性及結構性改變之探討 Does 921 Earthquake Have Asymmetric and Structural Change on Taiwan’s Stock Market? |
| 指導教授: |
蔡群立
Tsai, Chun-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 經濟學系 Department of Economics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 極值理論 、921地震 、風險值 、非對稱性 、結構性改變 |
| 外文關鍵詞: | extreme value theory, 921 earthquake, value-at-risk, asymmetry, structural change |
| 相關次數: | 點閱:135 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是應用極值理論探討台灣二十六個產業股價之極端風險值是否因921地震而有所改變,我們分別觀察尾端風險(tail risk)及尾端指數(tail index)是否會因921地震而有顯著性的改變,換言之,我們關心921地震前、後各產業指數上漲及下跌風險是否一致,此為「結構性改變」檢定。另一方面,分別探討台灣產業之左尾端指數(下降風險值)在921地震前、後是否和右尾端指數(潛在上升風險值)有所不同,此即「非對稱性改變」檢定。此外,本文並進一步探討產業與市場投資組合或兩兩產業間的共變關係,是否會因921地震而存在非對稱性及結構性改變。
研究結果發現921地震後,大多產業股價之下降風險大於潛在上升風險值,且產業股價之下降風險及潛在上升風險均有顯著增加,此結果顯示台灣大多產業股價存在結構性改變,且921地震過後,產業股價之非對稱性更為顯著。另外,我們發現兩兩產業間之共同上漲及共同下跌之機率,921前、後均無顯著改變;然而,921地震過後,兩兩產業間共同下跌的機率多顯著高於共同上漲的機率。
This paper applies “extreme value theory” to investigate if risk indices of 26 industries in Taiwan’s stock market change due to 921 Earthquake. We respectively test if tail risk and tail quantile index significantly change due to 921 Earthquake. That is, we concern if downside risk and upward potential risk for each sectoral index are consistent prior to and posterior 921 Earthquake. This is called “Structural Change test”. On the other side, we analyze if left risk index (downside risk) is the same with the right risk index respectively before and after 921 Earthquake. This is called “Asymmetric test”. Besides, this paper future more tests asymmetric and structural change in the co-movements for pairs of sectoral indices.
The empirical results find downside risk is significantly larger than upward risk for most industries posterior to 921 Earthquake. Both downside risk and upward potential risk significantly increase after the 921 Earthquake. Our results indicate 921 Earthquake cause the structural and asymmetric change on indices for most industries. After 921, the asymmetry of risk indices is more significant. Besides, we find the probabilities of simultaneous booms or simultaneous crashes for pairs of sectors do not significantly change after 921 Earthquake. However, the probability of simultaneous crashes is significantly larger than that of simultaneous booms after 921 Earthquake.
一、 中文部分
產業動態(1999)。921地震對台灣經濟產業的影響。彰銀資料,48(10),41-50。
二、 英文部分
Albala-Bertrand, J. M. (1993). Natural disaster situations and growth: A macroeconomic model for sudden disaster impacts. World Development, 21(9), 1417-1434.
Auffret, P. (2003). High consumption volatility: The impact of natural disasters? World Bank Policy Research Working Paper 2962.
Barrett, W. B., Heuson, A. J. & Kolb, R. W. (1986). The effect of Three Mile Island on utility bond risk premia: A note. Journal of Finance, 41(1), 255-261.
Barro, R. J. (2006). Rear disasters and asset markets in the twentieth century. The Quarterly Journal of Economics, 121(3),823-866.
Beirlant, J. Dierckx, G. & Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes, 2(2), 177-200.
Boothe, P. & Glassman, P. D. (1987). The statistical distribution of exchange rate. Journal of International Economics, 22, 297-319.
Bowen, R. M., Castanias, R. P. & Daley, L. A. (1983). Intra-industry effects of the accident at Three Mile Island. Journal of Financial and Quantitative analysis, 18(1), 87-112.
Brown, J. R., Cummins J. D., Lewis C. M. & Wei, R. (2004). An empirical analysis of the economic impact of federal terrorism reinsurance. Journal of Monetary Economics, 51(5), 861-898.
Carter, D. & Simkins, B. J. (2004). The market’s reaction to unexpected, catastrophic events: The case of airline stock returns and the September 11th attacks. The Quarterly Review of Economics and Finance, 44(4), 539-558.
Charveriat, C. (2000). Natural disasters in Latin America and Caribbean: Anoverview of risk. Inter-American Development Bank Working Paper 434.
Chen, A. H. & Siems, T. F. (2004). The effect of terrorism on global capital markets. European Journal of Political Economy, 20(2), 349-366.
Chen, M. H., Kim, W. G. & Kim, H. J. (2005). The impact of macroeconomic and non-macroeconomic forces on hotel stock returns. Internation Journal of Hospitality management, 24(2), 243-258.
Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.
Dahan, E. & Mendelson, H. (2001). An extreme value model of concept testing. Management Science, 47(1), 102-116.
Dekkers, A. L. M., Einmahl, J. H. J.& Haan, L. de (1989). A moment estimator for the index of an extreme-value distribution. The Annals of Statistics, 17(4), 1833-1855.
Dekkers, A. L. M. & Haan, L. de. (1989). On the estimation of the extreme-value index and larger quantile estimation. The Annals of Statics, 17(4), 1795-1832.
Drakos, K. (2004). Terrorism-induced structural shifts in financial risk: Airline stocks in the aftermath of the September 11th terror attacks. European Journal of Political Economy, 20(2), 435-446.
Dumouchel, W. H. (1983). Estimating the stable index α in order to measure tail thickness: A critique. The Annals of Statistics, 11(4), 1019-1031.
Embrechts, P., Kluppelberg, C. & Mikosch, T. (1997). Modelling extremal event. Berlin: Springer.
Falk, M., Husler, J. & Reiss, R. D. (1994). Laws of small numbers: Extremes and rare events. Berlin: Birkhauser.
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-420
Fernandez, V. (2007). Extreme-value dependence: An application to exchange rate markets. Physica A: Statistical Mechanics and its Applications, 377(2), 583-589.
Ghose, D. & Kroner, K. F. (1995). The relationship between GARCH and symmetric stable distributions: Finding the source of fat tails in the financial data. Journal of Empirical Finance, 2(3), 225-251.
Goldie, C. M. & Smith, R. (1987). Slow variation with remainder: Theory and applications. Quarterly Journal of Mathematics, 38(1), 45-71.
Haan, L. De, Ferreira, A.. (2006). Extreme Value theory: A introduction. New York: Springer.
Haeusler, E. & Teugels, J. L. (1985). On asymptotic normality of Hill’s estimator for the exponent of regular variation. The Annals of Statistics, 13(2), 743-756.
Haile, F. D. & Pozo, S. (2006). Exchange rate regimes and currency crises: An evaluation using extreme value theory. Review of International Economics, 14(4), 554-570.
Hall, P. (1982). On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society. Series B, 44(1), 37-42.
Hall, P., Horowitz, J. L. & Jing, B.-Yi (1995). On blocking rules for the bootstrap with dependent data. Biometrika, 82(3), 561-574.
Hall, P. & Welsh, A. H. (1985). Adaptive estimates of parameters of regular variation. The Annals of Statistics, 11(1), 331-341.
Hartmann, P., Straetmans, S. & Vries, C. G. de (2004). Asset market linkages in crisis periods. The Review of Economics and Statistics, 86(1), 313-326.
Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3(5), 1163-1174.
Hill, J., & Schneeweis, T. (1983). The effect of Three Mile Island on electric utility stock prices: A note. Journal of Finance, 38(4), 1285-1292.
Ho, T. K. (2008). Extremal analysis of currency crises in Taiwan. Applied Economics, 40, 1175-1186.
Jansen, D. W. & Vries, C. G. de (1991). On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics, 73(1), 18-24.
Jondeau, E. & Rockinger, M. (2003). Testing foe difference in the tails of stock-market return. Journal of Empirical Finance, 10(5), 559-581.
Koedijk, K. G., Stork, P. A. & de Vries, C. G. (1992). Difference between foreign exchange rate regimes: the view from the tails. Journal of International Money and Finance, 11, 462-473.
Kotz, S. & Nadarajah, S. (2000). Extreme value distrubutions: Theory and applications. London: Imperial college press.
Kunreuther, H. & Michel-Kerjan, E. (2004). Police watch: Challenges for terrorism risk insurance in the United States. Journal of Economic Perspectives, 18(4), 201-214
Lee, C. C. & Chien, M. S. (2008). Structural breaks, tourism development, and economic growth: Evidence from Taiwan. Mathematics and Computers in Simulation, 77(4), 358-368.
Ledford, W. & Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83(1), 169-187.
Longin, F. & Solnik, B. (2001). Extreme correlation of international equity markets. The Journal of Finance, 56(2), 649-676.
Loretan, M. & Phillips, P. C. B. (1994). Testing the covariance stationary of heavy-tailed time series. Journal of Empirical Finance, 1(2), 211-248.
Martens, M. & Poon, S. H. (2001). Returns synchronization and daily correlation dynamics between international stock markets. Journal of Banking and Finance, 25(10), 1805-1827.
Mey, J. de. (2003). The aftermath of September 11: The impact on and systemic risk to insurance industry. The Geneva Papers and Insurance, 28(1), 65-70.
Nippani, S. & Washer, K. M. (2004). SARS: A non-event for affected countries’ stock markets? Applied Financial Economics, 14(15), 1105-1110.
Nippani, S. & Bathala, C. T. (2008). The impact of the asian tsunami on the affected countries’ stock markets. The Icfai Journal of Applied Finance, 14(5), 44-56.
Noy, I. (2009). The macroeconomic consequences of disasters. Journal of Development Economics, 88, 221-231.
Pickands, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3(1), 119-131.
Poon, S.H., Rockinger, M. & Tawn, J. (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. The Review of Financial Studies, 17(2), 581-610.
Reiss, R.-D. & Thomas, M. (1997). Statistical analysis of extreme values: Applications to insurance, finance, hydrology and other fields. Berlin: Birkhauser.
Richman, V., Santos, M. R. & Barkoulas, J. T. (2005). Short and long-term effects of the 9/11 event: The international evidence. International Journal of Theoretical and Applied Finance, 8(7), 947-958.
Shelor, R. M., Anderson, D. C., & Cross, M. L. (1992). Gaining from loss: Property-liability insurer stock values in the aftermath of the 1989 California earthquake. The Journal of Risk and Insurance, 59(3), 476-488.
Straetmans, S. T. M., Verschoor, W. F. C. & Wolff, C. C. P. (2008). Extreme U.S. stock market fluctuation in the wake of 9/11. Journal of Applied Econometrics, 23(1), 17-42.
Thode, H. C. (2002). Testing for normality. New York: Marcel Dekker.
Uselton, G. C., Kolari, J. W. & Fraster, D. R. (1986). Long-term trends in the riskiness of electric utility shares. Journal of Buiness Finance and Accounting, 13(3), 453-459.
Yamori, N. & Kobayashi, T. (2002). Do Japanese insurers benefit from a catastrophic event? Journal of The Japanese and International Economies, 16, 92-108.