| 研究生: |
陳思瑋 Chen, Sih-wei |
|---|---|
| 論文名稱: |
微分再生核內插法用於結構分析之應用 Applications of DRK interpolation to structural analysis |
| 指導教授: |
吳致平
Wu, Chih-ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 內插 、無網格方法 、適點方法 、再生核 |
| 外文關鍵詞: | Kronecker delta properties, Point collocation, Reproducing kernels, Elastic solids, Interpolation, Meshfree methods |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解決物理問題中面臨偏微分方程式之求解,各式計算方法於焉產生。本文之微分再生核內插法,將內插函數分為原始函數與改善函數,其中原始函數滿足Kronecker delta性質,而改善函數則是由一組微分再生核條件求得。用此方法則能很容易的代入幾何邊界條件。不同於傳統RK (reproducing kernel)法直接對形狀函數微分求取高階形狀函數,而本法係建立一組微分再生核條件來求得高階形狀函數。本文呈現之數值範例能展現DRK內插法之分析能有很好的精度與快速之收歛性。
A meshfree collocation method based on the differential reproducing kernel (DRK) interpolation is proposed for solving partial differential equations governing a certain physical problem. A general formulation for the present DRK interpolation method is developed. The interpolation function at each referred node is separated into a primitive function processing Kronecker delta properties and an enrichment function constituting reproducing conditions. By means of the present DRK interpolation, the essential boundary conditions can be readily applied, exactly like the implementation in finite element methods. Contrary to the manipulation in conventional reproducing kernel (RK) methods where the differential operation towards the shape functions of the RK approximants is directly taken, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of DRK interpolants. A point collocation method based on the present DRK interpolation for the deformation and stress analyses of several one- and two-dimensional elastic solids is illustrated. It is shown that the present DRK interpolation-based collocation method indeed is a fully meshfree approach with excellent accuracy and fast rate of convergence.
Aluru, N.R. (2000): A point collocation method based on reproducing kernel approximations. International Journal for Numerical Methods in Engineering, vol. 47, pp. 1083_1121.
Atluri, S.N.; Cho, J.Y.; Kim, H.G. (1999): Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, vol. 24, pp. 334_347.
Atluri, S.N.; Liu, H.T.; Han, Z.D. (2006): Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems. CMES: Computer Modeling in Engineering & Sciences, vol. 14, pp. 141_152.
Atluri, S.N.; Shen, S. (2002): The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, 429 pages, Encino, CA, USA.
Atluri, S.N.; Zhu, T. (1998): A new meshless local Petro-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, vol. 22, pp. 117_127.
Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. (1996): Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 3_47.
Belytschko, T.; Lu, Y.Y.; Gu, L. (1994): Element-Free Galerkin Methods. International Journal for Numerical Methods in Engineering, vol. 37, pp. 229_256.
Chen, J.S.; Han, W.; You, Y.; Meng, X. (2003): A reproducing kernel method with nodal interpolation property. International Journal for Numerical Methods in Engineering, vol. 56, pp. 935_960.
Chen, J.S.; Pan, C.; Wu, C.T. (1997): Large deformation analysis of rubber based on a reproducing kernel particle method. Computational Mechanics, vol. 19, pp. 211_227.
Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K. (1996): Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 195_227.
Huerta, A.; Sonia, F.M. (2000): Enrichment and coupling of the finite element and meshless methods. International Journal for Numerical Methods in Engineering, vol. 48, pp. 1615_1636.
Jarak, T.; Soric, J.; Hoster, J. (2007): Analysis of shell deformation responses by the meshless local Petrov-Galerkin (MLPG) approach. CMES: Computer Modeling in Engineering & Sciences, vol. 18, pp. 235_246.
Krongauz, Y.; Belytschko, T. (1996): Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering, vol. 131, pp. 133_145.
Lancaster, P.; Salkauakas, K. (1981): Surfaces generated by moving least squares methods. Mathematical Computation, vol. 37, pp. 141_158.
Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahdadi, F.A. (1993): High strain Lagrangian hydrodynamics_a three-dimensional SPH code for dynamic material response. Journal of Computational Physics, vol. 109, pp. 67_75.
Liew, K.M.; Ng, T.Y.; Wu, Y.C. (2002): Meshfree method for large deformation analysis-a reproducing kernel particle approach. Engineering Structures, vol. 24, pp. 543_551.
Liew, K.M.; Wang, J.; Ng, T.Y.; Tan, M.J. (2004): Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. Journal of Sound and Vibration, vol. 276, pp. 997_1017.
Liu, G.R.; Gu, Y.T. (2005): An Introduction to Meshfree Methods and Their Programming. Springer, 691 pages,The Netherlands.
Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. (1995): Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, vol. 38, pp. 1655_1679.
Liu, W.K.; Jun, S.; Zhang, Y.F. (1995): Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering, vol. 20, pp. 1081_1106.
Lu, Y.Y.; Belytschko, T.; Gu, L. (1994): A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, vol. 113, pp. 397_414.
Monaghan, J.J. (1988): An introduction to SPH. Computatioal Physics Communication, vol. 48, pp. 89_96.
Sladek, J.; Sladek, V.; Wen, P.H.; Aliabadi, M.H. (2006): Meshless local Petrov-Galerkin (MLPG) method for shear deformable shells analysis. CMES: Computer Modeling in Engineering & Sciences, vol. 13, pp. 103_117.
Sladek, J.; Sladek, V.; Zhang, C.; Garcia-Sanche, F.; W nsche, M. (2006): Meshless local Petrov-Galerkin method for plane piezoelectricity. CMC: Computers, Materials, & Continua, vol. 4, pp. 109_117.
Sladek, J.; Sladek, V.; Zhang, C.; Solek, P. (2007): Application of the MLPG to thermo-piezoelectricity. CMES: Computer Modeling in Engineering & Sciences, vol. 22, pp. 217_233.
Sladek, J.; Sladek, V.; Zhang, C.; Tan, C.L. (2006): Meshless local Petrov-Galerkin method for linear coupled thermoelastic analysis. CMES: Computer Modeling in Engineering & Sciences, vol. 16, pp. 57_68.
Soric, J.; Li, Q.; Jarak, T.; Atluri, S.N. (2004): Meshless local Petrov-Galerkin (MLPG) formulation for analysis of thick plates. CMES: Computer Modeling in Engineering & Sciences, vol. 6, pp. 349_357.
Vavourakis, V.; Sellountos, E.J..; Polyzos, D. (2006): A comparison study on different MLPG(LBIE) formulations. CMES: Computer Modeling in Engineering & Sciences, vol. 13, pp. 171_183.
Wu, C.P.; Chiu, K.H.; Wang, Y.M. (2008): A differential reproducing kernel particle method for the analysis of multilayered elastic and piezoelectric plates. CMES: Computer Modeling in Engineering & Sciences, vol. 27, pp. 163_186.
Wu, C.P.; Chiu, K.H.; Wang, Y.M. (2009): A meshfree DRK-based collocation method for the coupled analysis of functionally graded magneto-electro-elastic shells and plates. CMES: Computer Modeling in Engineering & Sciences, accepted.
Zhao, X.; Liew, K.M.; Ng, T.Y. (2003): Vibration analysis of laminated composite cylindrical panels via a meshfree approach. International Journal of Solids and Structures, vol. 40, pp. 161_180.