簡易檢索 / 詳目顯示

研究生: 李豪源
Li, Hao-Yuan
論文名稱: 有限層狀與柱狀元素法之發展與其在功能性材料積層板與中空圓柱殼結構力學問題上之應用
Development of the finite layer and prism methods and their applications to the structural problems of multilayered functionally graded plates and circular hollow cylinders
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: Reissner混合變分原理虛位移原理有限層狀法有限柱狀法功能性梯度材料奈米碳管撓曲振動圓柱
外文關鍵詞: Reissner mixed variational theorem, Finite layer methods, Finite prism methods, Functionally graded materials, Carbon nanotubes
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於Reissner混合變分原理,依序發展三種不同元素(有限層狀元素、有限矩形柱狀元素與有限環形柱狀元素)之有限層狀與柱狀方法,將其應用於具不同邊界組合之功能性材料積層板與殼,分析其靜力與自由振動物理問題。在研究初期,發展基於Reissner混合變分原理與虛位移原理之有限層狀元素法,將其應用於雙邊皆為簡支承之功能性材料積層板之動態與靜態問題分析上;此功能性材料在厚度方向之假設可為自然對數亦或是呈冪級數方式分佈。在分析時,將該板切割成數個獨立之層狀元素,且在元素內x-y平面使用雙傅立葉函數將元素內之變數展開,在厚度方向之變數則採用Lagrange多項式函數做模擬;其模擬的函數可自由選擇一階線性或二階拋物線函數
    。在後續範例中,將與文獻內之三維解析解做比較,以討論各面內與側向主變數之函數階數選擇對此數值方法精確度之影響。
    後續將發展有限層狀元素為有限矩形與環形柱狀元素,將其應用在具變化邊界之功能性積層板與中空圓柱殼靜力問題上;另外亦將發展有限矩形元素法於奈米碳管加勁材料積層板之自然振動分析上,該板之其中一對邊界為簡支承,另一對則可為簡支承、固定端與自由端之組合。在奈米碳管之功能性材料設計上共有四種基本分佈形式,各自代表奈米碳管纖維加勁材料在該板厚度方向之分佈形態,分別為均勻分佈、V形分佈、菱形分佈與X形分佈。在分析時,將該板與中空圓柱殼切割成有限個矩形柱狀與環形柱狀元素,在元素之y方向或θ方向使用單傅立葉函數將元素內之變數展開,而在x-ζ平面則採用Lagrange多項式函數加以模擬
    ;在x-ζ平面之Lagrange多項式階數將影響此數值方法之精度,此處共有三種元素可供選擇,分別為線性元素(L4)與二次元素(Q8與Q9)。在後續範例中,雙邊皆為簡支承之板殼物理問題將與文獻內之三維解析解做比較,以討論有限矩形柱狀與環形柱狀元素之適用性;另外在變化邊界之範例則與商用軟體ANSYS(12.0版)所得之數值解做比較,以確定本法之精確度。

    關鍵字: Reissner混合變分原理、虛位移原理、有限層狀法、有限柱狀法、功能性梯度材料、奈米碳管、撓曲、振動、板、圓柱

    SUMMARY
    The Reissner mixed variational theorem (RMVT)- based finite layer methods (FLMs), finite rectangular prism methods (FRPMs) and finite cylindrical prism methods (FCPMs), are developed for the three-dimensional (3D) analysis of multilayered functionally graded material (FGM) plates/ circular hollow cylinders with various boundary conditions and under mechanical loads. In these formulations, the structures is divided into a number of finite rectangular/cylindrical prisms, in which the trigonometric functions and Lagrange polynomials are used to interpolate the circumferential direction and the axial–radial surface variations of the primary field variables of each individual prism, respectively.

    The number of nodes of the nodal surface of each prism can be set at four for linear FRPMs/ FCPMs, and eight and nine for quadratic ones. These quadratic FRPM/ FCPM solutions of simply supported, multilayered composite cylinders and sandwiched FGM ones obtained in this way are in excellent agreement with the exact 3D solutions available in the literature, and those solutions for the plates/ cylinders with combinations of various edge conditions closely agree with the solutions obtained using the ANSYS commercial software.

    Keywords: Reissner mixed variational theorem; Finite layer methods; Finite prism methods; Functionally graded materials; Carbon nanotubes

    目錄 英文摘要 I 中文摘要 V 誌謝 VI 目錄 VII 第一章 緒論 1 第二章 基於RMVT與PVD能量原理之層狀元素 4 2.1 矩形層狀元素 4 2.2 Reissner混合變分原理 8 2.3 虛位移原理 10 2.4 Euler-Lagrange方程式 11 2.5 Hamilton原理 13 2.6 積層板撓曲問題應用範例 17 2.6.1 雙層疊合積層板 17 2.6.2 三層疊合積層板 20 2.6.3 單層功能性梯度材料板 26 2.6.4 多層疊合功能性材料梯度板 31 2.7 積層板自由振動問題應用範例 33 2.7.1 雙層疊合積層板 33 2.7.2 雙層與四層疊合積層板 34 2.7.3 單層功能性梯度材料板 44 2.7.4 多層疊合功能性材料板 47 2.8 層狀元素法結論 49 第三章 基於RMVT能量原理之矩形柱狀元素 52 3.1 矩形柱狀元素 52 3.2 Reissner混合變分原理 55 3.3 Euler-Lagrange方程式 56 3.4 Hamilton原理 58 3.5 積層板撓曲問題應用範例 60 3.5.1 正交性材料板 61 3.5.2 單層功能性材料板 65 3.5.3 三層疊合功能性材料板 68 3.6 積層板自由振動問題應用範例 72 3.6.1 均質材料積層板 72 3.6.2 奈米碳管加勁功能性梯度板 75 第四章 基於RMVT能量原理之環形柱狀元素 82 4.1 環形柱狀元素 82 4.2 Reissner混合變分原理 85 4.3 Euler-Lagrange方程式 86 4.4 中空圓柱積層殼撓曲問題應用範例 89 4.4.1 三層疊合材料中空圓柱殼 89 4.4.2 單層功能性材料中空圓柱殼 90 4.4.3 三層疊合功能性材料中空圓柱殼 94 第五章 結論與未來發展 101 第六章 參考文獻 103

    Akhras G., Li W.C. (2007), “Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method”, Smart Mater. Struct., 16, 561_69.
    Akhras G., Li W.C. (2008), “Three-dimensional thermal buckling analysis of piezoelectric composite plates using the finite layer method”, Smart Mater. Struct., 17, 1_8.
    Akhras G., Li W.C. (2010), “Three-dimensional stability analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method”, J. Intell. Mater. Sys. Struct., 21, 719_27.
    Carrera E. (2000a), “An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates”, Compos. Struct., 50, 183_98.
    Carrera E. (2000b), “A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates”, Compos. Struct., 48, 245_60.
    Carrera E. (2000c), “Historical review of zig-zag theories for multilayered plates and shells”, Appl. Mech. Rev., 56, 287-308.
    Carrera E. (2001), “Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells”, Appl. Mech. Rev., 54, 301_29.
    Carrera E. (2003), “Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks”, Arch. Comput. Methods Eng., 10, 215_96.
    Carrera E., Ciuffreda A. (2005), “A unified formulation to assess theories of multilayered plates for various bending problems”, Compos. Struct., 69, 271_93.
    Carrera E., Petrolo M. (2010), “Guidelines and recommendations to construct theories for metallic and composite plates”, AIAA J., 48, 2852_66.
    Carrera E., Brischetto S., Robaldo A. (2008), “Variable kinematic model for the analysis of functionally graded material plates”, AIAA J., 46, 194_203.
    Carrera E., Brischetto S., Cinefra M. (2010), “Variable kinematics and advanced variational statements for free vibration analysis of piezoelectric plates and shells”, CMES_Comput. Modeling Eng. Sci., 65, 259_341.
    Carrera E., Fazzolari F.A., Demasi L. (2011), “Vibration analysis of anisotropic simply supported plates by using variable kinematic and Rayleigh-Ritz method”, J. Vib. Acoust., 133, 061017.
    Carrera E., Brischetto S., Cinefra M., Soave M. (2010), “Refined and advanced models for multilayered plates and shells embedding functionally graded material layers”, Mech. Adv. Mater. Struct., 17, 603_21.
    Chen W.Q., C.F. (2005), “3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported”, Compos. Struct., 69, 77_87.
    Chen W.Q., Lv C.F., Bian Z.G. (2004), “Free vibration analysis of generally laminated beams via state-space-based differential quadrature”, Compos. Struct., 63, 417_25.
    Cheung Y.K., Jiang C.P. (2001), “Finite layer method in analysis of piezoelectric composite laminates”, Comput. Methods Appl. Mech. Engrg., 191, 879_901.
    Cho K.N., Bert C.W., Striz A.G. (1991), “Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory”, J. Sound Vib., 145, 429_442.
    Desai Y.M., Ramtekkar G.S., Shah A.H. (2003), “Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model”, Compos. Struct., 59, 237_249.
    Demasi L. (2008), “ hierarchy plate theories for thick and thin composite plates: the generalized unified formulation”, Compos. Struct., 84, 256_70.
    Demasi L. (2009a), “ mixed plate theories based on the generalized unified formulation. Part I: Governing equations”, Compos. Struct., 87, 1_11.
    Demasi L. (2009b), “ mixed plate theories based on the generalized unified formulation. Part II: Layerwise theories”, Compos. Struct., 87, 12_22.
    Demasi L. (2009c), “ mixed plate theories based on the generalized unified formulation. Part III: Advanced mixed high order shear deformation theories”, Compos. Struct., 87, 183_94.
    Demasi L. (2009d), “ mixed plate theories based on the generalized unified formulation. Part IV: Zig-zag theories”, Compos. Struct., 87, 195_205.
    Demasi L. (2009e), “ mixed plate theories based on the generalized unified formulation. Part V: Results”, Compos. Struct., 88, 1_16.
    D’Ottavio M., Carrera E. (2010), “Variable-kinematics approach for linearized buckling analysis of laminated plates and shells”, AIAA J., 48, 1987_96.
    Dozio L., Carrera E. (2011), “A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness”, J. Sound Vub., 330, 4611_32.
    Fazzolari F.A., Carrera E. (2011), “Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates”, Compos. Struct., 94, 50_67.
    Kant T., Swaminathan K. (2001), “Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory”, Compos. Struct., 53, 73_85.
    Kashtalyan M. (2004), “Three-dimensional elasticity for bending of functionally graded rectangular plates”, Eur. J. Mech. A/Solids, 23, 853_64.
    Kashtalyan M., Menshykova M. (2007), “Three-dimensional elastic deformations of a functionally graded coating/substrate system”, Int. J. Solids Struct., 44, 5272_88.
    Kashtalyan M., Menshykova M. (2009), “Three-dimensional elasticity solution for sandwich panels with a functionally graded core”, Compos. Struct., 87, 36_43.
    Kashtalyan M., Menshykova M. (2009), “Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading”, Compos. Struct., 89, 167_76.
    Koizumi M. (1993), “Concept of FGM.”, Ceramic Trans., 34, 3_10.
    Koizumi M. (1997), “FGM activities in Japan.”, Compos. Part B Eng., 28, 1_4.
    Liew K.M., Ng T.Y., Zhang J.Z. (2002), “Differential quadrature_layerwise modeling technique for three-dimensional analysis of cross-ply laminated plates of various edge-supports”, Comput. Methods Appl. Mech. Engrg., 191, 3811_32.
    C.F., Chen W.Q., Shao J.W. (2008), “Semi-analytical three-dimensional elasticity solutions for generally laminated composite plates”, Eur. J. Mech. A/Solids, 27, 899_917.
    C.F., Lim C.W., Chen W.Q. (2009), “Semi-analytical analysis for multi-directional functionally graded plates: 3D elasticity solutions”, Int. J. Numer. Methods Eng., 79, 25_44.
    C.F., Zhang Z.C., Chen W.Q. (2007), “Free vibration of generally supported rectangular Kirchhoff plates: State-space based differential quadrature method”, Int. J. Numer. Methods Eng., 70, 1430_50.
    Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A., Ford RG. (1999), “Functionally Graded Materials: Design, Processing and Applications”, Kluwer Academic, Boston.
    E., Drasar C., Schilz J., Kaysser W.A. (2003), “Functionally graded materials for sensor and energy applications”, Mater. Sci. Eng. A., 362, 17_39.
    Noor A.K., Burton W.S. (1990), “Assessment of computational models for multilayered anisotropic plates”, Compos. Struct., 14, 233_65.
    Noor A.K., Burton W.S. (1990), “Assessment of computational models for multilayered composite shells”, Appl. Mech. Rev., 43, 67_97.
    Noor A.K., Burton W.S., Bert C.W. (1996), “Computational model for sandwich panels and shells”, Appl. Mech. Rev., 49, 155_99.
    Noor A.K., Burton W.S., Peters J.M. (1991), “Assessment of computational models for multilayered composite cylinders”, Int. J. Solids Struct., 27, 1269_86.
    Pagano N.J. (1970), “Exact solutions for rectangular bidirectional composites and sandwich plates”, J. Compos. Mater., 4, 20_34.
    Pan E. (2003), “Exact solution for functionally graded anisotropic elastic composite laminates”, J. Compos. Mater., 37, 1903_20.
    Pan E., Roy A.K. (2006), “A simple plane-strain solution for functionally graded multilayered isotropic cylinders”, Struct. Eng. Mech., 24, 727_40.
    Plevako V.P. (1971), “On the theory of elasticity of inhomogeneous media”, J. Appl. Math Mech., 35, 806_13.
    Ramirez F., Heyliger P.R., Pan E. (2006a), “Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach”, Compos. Part B Eng., 37, 10_20.
    Ramirez F., Heyliger P.R., Pan E. (2006b), “Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates”, Mech. Adv. Mater. Struct., 13, 249_66.
    Reddy J.N., Phan N.D. (1985), “Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory”, J. Sound Vib., 98, 157_170.
    Saravanos D.A., Heyliger P.R., Hopkins D.A. (1997), “Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates”, Int. J. Solids Struct., 34, 359_78.
    Sheng H.Y., Ye J.Q. (2002), “A state space finite element for laminated composite plates”, Comput. Methods Appl. Mech. Engrg., 191, 4259_76.
    Sheng H.Y., Ye J.Q. (2003), “A three-dimensional state space finite element solution for laminated composite cylindrical shells”, Comput. Methods Appl. Mech. Engrg., 192, 2441_59.
    Schulz U., Peters M., Bach F.W., Tegeder G. (2003), “Graded coating for thermal, wear and corrosion barriers”, Mater. Sci. Eng., 362, 61_80.
    Varadan T.K., Bhaskar K. (1991), “Bending of laminated orthotropic cylindrical shells-An elasticity approach”, Compos. Struct., 17, 141-56.
    Vel S.S., Batra, R.C. (2004), “Three-dimensional exact solution for the vibration of functionally graded rectangular plates”, J. Sound Vib., 272, 703_730.
    Watari F., Yokoyama A., Saso F., Kawasaki T. (1997), “Fabrication and properties of functionally graded dental implant”, Compos. Part B Eng., 28, 5_11.
    Whitney J.M., Pagano N.J. (1970), “Shear deformation in heterogeneous anisotropic plates”, J. Appl. Mech., 37, 1031_1036.
    Woodward B., Kashtalyan M. (2010), “Bending responses of sandwich panels with graded core: 3D elasticity analysis”, Mech. Adv. Mater. Struct., 17, 583_96.
    Woodward B., Kashtalyan M. (2011), “Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates”, Eur. J. Mech. A/Solids, 30, 705_18.
    Wu C.P., Chen W.Y. (1994), “Vibration and stability of laminated plates based on a local high order plate theory”, J. Sound Vib., 177, 503_520.
    Wu C.P., Chang Y.T. (2012), “A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer”, Compos. Part B Eng., 43, 3318-33.
    Wu C.P., Jiang R.Y. (2012), “A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges”, Compos. Struct., 94, 3401-20.
    Wu C.P., Jiang T.Y. (2011), “The 3D coupled analysis of FGPM circular hollow sandwich cylinders under thermal load”, J. Intell. Mater. Sys. Struct., 22, 691-712.
    Wu C.P., Kuo C.H. (2013), “A unified formulation of PVD-based finite cylindrical layer methods for functionally graded material sandwich cylinders”, Appl. Math. Model., 37, 916-38.
    Wu C.P., Li H.Y. (2010a), “The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates”, Compos. Struct., 92, 2476_96.
    Wu C.P., Li H.Y. (2010b), “An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates”, Compos. Struct., 92, 2591-2605
    Wu C.P., Lu Y.C. (2009), “A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates”, Compos. Struct., 90, 363_372.
    Wu C.P., Tsai T.C. (2012), “Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method”, Appl. Math. Model, 36, 1910_30.
    Wu C.P., Tsai Y.H. (2004), “Asymptotic DQ solutions of functionally graded annular spherical shells”, Eur. J. Mech. A/Solids, 23, 283_99.
    Wu C.P., Tsai Y.H. (2010), “Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales”, Eur. J. Mech. A/Solids, 29, 166_181.
    Wu C.P., Wu C.H. (2000), “Asymptotic differential quadrature solutions for the free vibration of laminated conical shells”, Comput. Mech., 25, 346_57.
    Wu C.P., Chen S.J., Chiu K.H. (2010), “Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method”, Mech. Res. Commun., 37, 54_60.
    Wu C.P., Chiu K.H., Wang Y.M. (2008), “A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells”, CMC-Comput. Mater. Continua, 8, 93_132.
    Wu C.P., Wang Y.M., Hung Y.C. (2001), “Asymptotic finite strip analysis of doubly curved laminated shells”, Comput. Mech., 27, 107_18.
    Ye J.Q., Sheng H.Y. (2003), “Free-edge effect in cross-ply laminated hollow cylinders subjected to axisymmetric transverse loads”, Int. J. Mech. Sci., 45, 1309_26.
    Ye J.Q., Sheng H.Y., Qin Q.H. (2004), “A state space finite element for laminated composites with free edges and subjected to transverse and in-plane loads”, Comput. Struct., 82, 1131_41.
    Zenkour A. (2006), A generalized shear deformation theory for bending analysis of functionally graded plates”, Appl. Math. Model., 30, 67-84.
    Zhang J.Z., Ng T.Y, Liew K.M. (2003), “Three-dimensional theory of elasticity for free vibration analysis of composite laminates via layerwise differential quadrature modelling”, Int. J. Numer. Methods Eng., 57, 1819_44.

    下載圖示 校內:2016-02-24公開
    校外:2016-02-24公開
    QR CODE