| 研究生: |
林樞宇 Lin, Shu-Yu |
|---|---|
| 論文名稱: |
石墨烯/奈米氮化矽複合陶瓷材料之機械性質的研究 Investigation of the mechanical properties of Si3N4/ Graphene nanocomposites |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 氮化矽 、石墨烯 、奈米複合陶瓷 、碳熱還原處理 、韌化機制 |
| 外文關鍵詞: | silicon nitride, graphene, nanocomposite, carbothermal reduction treatment, toughening mechanism |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用非晶氮化矽、結晶化β相氮化矽與石墨烯等奈米粉體為起始原料,利用製程參數的調整,形成單一相氮化矽的燒結體,並從中選擇適當的粉體作為起始原料,配合火花電漿燒結技術,製備石墨烯/氮化矽基奈米複合陶瓷,藉由壓痕技術探討石墨烯添加量對氮化矽機械性質的影響。
為了製備單一相氮化矽,首先利用碳熱還原處理減低非晶氮化矽粉體中的氧含量,進而抑制燒結體內氧氮化矽之第二相的生成。研究結果顯示:添加碳黑之試樣在熱處理溫度1400 0C,持溫時間10小時下,能有效與氮化矽粉體進行碳熱還原,大幅降低燒結體中氧氮化矽的含量;當碳黑添加量從3 wt%增加至5 wt%時,形成單一相氮化矽。並與不需要碳熱還原處理即能燒結出單一相的結晶化β相氮化矽粉體作燒結體機械性質的比較。
結合微結構的觀察和維氏硬度測試,評估此兩種單一相氮化矽陶瓷的機械性質。結果顯示:非晶氮化矽粉末經過碳熱處理後,部分結晶化造成起始粉末相組成的差異,傾向形成高長寬軸比的晶粒分佈在等軸狀基材中,晶粒尺寸分佈為雙峰曲線,此方法雖能製備出單一相氮化矽,但燒結試樣殘留許多的孔洞,導致機械性質的大幅下降;反之摻雜較多助燒結劑的結晶化氮化矽粉末,燒結體的孔隙率低,較小的晶粒尺寸,導致燒結體具有較高的硬度,故後續將使用結晶化氮化矽粉體作為製備石墨烯/氮化矽奈米複合陶瓷的材料設計選擇。
經由沈降實驗找出分散添加物石墨烯的最佳溶劑組合,實驗結果顯示:石墨烯在添加了2 Vol%六甲基二矽氮烷(Hexamethydislizane, HMDS)的酒精中得到最好的分散效果。此外,藉由紅外線光譜分析HMDS和氮化矽粉體間的鍵結發現,HMDS上親電子的Si能有效的在氮化矽粉體表面去除Si-OH鍵,形成粉體表面甲基化,說明此高分子可能扮演氮化矽和石墨烯粉體混合中架橋的角色。
在石墨烯/氮化矽奈米複合陶瓷的部分,添加2 wt%石墨烯於基材中,能使破裂韌性值從5.0提昇至6.3 MPa*m1/2。藉由壓痕裂縫軌跡發現,石墨烯的添加對氮化矽的韌化機制,在壓頭所造成的破壞區域產生較多的微裂縫,顯示較多破壞能在此區域的石墨烯和氮化矽界面中釋放;鑲嵌在玻璃相中各種不同排列方向的多層石墨烯,使得裂縫產生偏折和分支。此外,從裂縫內可觀察到平行和垂直試片表面的石墨烯產生的裂縫架橋,裂縫方向的改變和架橋效應使得裂縫傳播的過程中能量被分散,而提昇了氮化矽陶瓷抵抗裂縫破壞的能力。
Si3N4 is good for high-temperature applications but not widely used due to its poor toughness. The majority of our work is to investigate the toughening behavior of Si3N4/ graphene nanocomposites by controlling the phase compositions of ceramics matrix as β-Si3N4 and adding graphene as reinforcement filler. To begin with, the sinterability of nano-Si3N4 powders doped with Y2O3 (SN6Y) after performing carbothermal reduction treatment (CRT) compared to the one with Y2O3 and Al2O3 (SN6Y8A) were evaluated through microstructural characterization and Vickers hardness test. The nano-Si3N4 powders (SN6Y8A) was selected as starting powders and dispersed with 0, 1, 2, 4 wt% graphene additions. Spark plasma sintering (SPS) method was used to enable the graphene which has low thermal stability to incorporate with β-Si3N4 and limit the grain distributions to nanometer order. We found that different oriented multi-layers graphene decorating with the grain boundaries of Si3N4 results in minor cracks, cracks deflection and crack branching around the indentation contact damage zone. Further examination of the radial cracks reveals graphene bridges the cracks for both in-plane and through-thickness direction. The main toughening mechanisms are developed with minor cracks, crack deflection, crack branching and crack bridging.
[1] F. L. Riley, "Silicon nitride and related materials," Journal of the American Ceramic Society, vol. 83, pp. 245-265, 2000.
[2] Z. Krstic and V. D. Krstic, "Silicon nitride: the engineering material of the future," Journal of Materials Science, vol. 47, pp. 535-552, 2012.
[3] G. G. H. Deeley, J.M. Moore, N.C., "Dense Silicon Nitride," Powder Metallurgy, vol. 8, pp. 145-151, 1961.
[4] A. Tsuge, K. Nishida, and M. Komatsu, "Effect of Crystallizing the Grain‐Boundary Glass Phase on the High‐Temperature Strength of Hot‐Pressed Si3N4 Containing Y2O3," Journal of the American Ceramic Society, vol. 58, pp. 323-326, 1975.
[5] S. Boskovic, L. Gauckler, G. Petzow, and T. Tien, "Reaction sintering forming beta-Si3N4 solid solutions in the system Si, Al/N, O. I- Sintering of SiO2-AlN mixtures," Powder Metallurgy International, vol. 9, pp. 185-189, 1977.
[6] M. Belmonte, J. González-Julián, P. Miranzo, and M. Osendi, "Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials," Journal of the European Ceramic Society, vol. 30, pp. 2937-2946, 2010.
[7] C. P. Dogan and J. A. Hawk, "Microstructure and abrasive wear in silicon nitride ceramics," Wear, vol. 250, pp. 256-263, 2001.
[8] J. H. Kim, B. Venkata Manoj Kumar, S. H. Hong, and H. D. Kim, "Fabrication of silicon nitride nanoceramics and their tribological properties," Journal of the American Ceramic Society, vol. 93, pp. 1461-1466, 2010.
[9] Gonzalez-Julian J, Schneider J, Miranzo P, Osendi MI, and Belmonte M, "Enhanced tribological performance of silicon nitride-based mate- rials by adding carbon nanotubes," Journal of the American Ceramic Society, vol. 94, pp. 2542–2548, 2011.
[10] HvizdosˇP, Puchy ́V, DuszováA, DuszaJ, BalázsiC, "Tribological and electrical properties of ceramic matrix composites with carbon nanotubes," Ceramics International, vol. 38, pp. 5669–5676, 2012.
[11] Geim AK, Novoselov KS, "The rise of graphene," Nature Materials, vol. 6, pp. 183–191, 2007.
[12] K. Matsuhiro and T. Takahashi, "Physical properties of sintered silicon nitride controlled by grain boundary chemistry and microstructure morphology," in MRS International Meeting on Advanced Materials, 1 st, Tokyo, Japan, pp. 11-15, 1989.
[13] D. Hardie and K. Jack, "Crystal structures of silicon nitride," Nature, vol. 180, pp. 332-333, 1957.
[14] J.J. Melendez-Martınez, A. Domınguez-Rodrıguez, "Creep of silicon nitride," Progress in Materials Science, vol. 49, pp. 19-107, 2004.
[15] A. I. H. Committee, Engineered Materials Handbook: Ceramics and glasses: ASM International, 1991.
[16] G. Terwilliger and F. Lange, "Pressureless sintering of Si3N4," Journal of Materials Science, vol. 10, pp. 1169-1174, 1975.
[17] R. Grun, "The crystal structure of-Si3N4: structural and stability considerations between-and-Si3N4," Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 35, pp. 800-804, 1979.
[18] P. Dörner, L. J. Gauckler, H. Krieg, H. L. Lukas, G. Petzow, and J. Weiss, "Calculation of heterogeneous phase equilibria in the SiAlON system," Journal of Materials Science, vol. 16, pp. 935-943, 1981.
[19] W.-Y. Ching, "Electronic Structure and Bonding of All Crystalline Phases in the Silica–Yttria–Silicon Nitride Phase Equilibrium Diagram," Journal of the American Ceramic Society, vol. 87, pp. 1996-2013, 2004.
[20] C. Brosset and I. Idrestedt, "Crystal structure of silicon oxynitride, Si2N2O," Nature, vol. 201, pp. 1211, 1964.
[21] Z. K. Huang, P. Greil, and G. Petzow, "Formation of silicon oxinitride from Si3N4 and SiO2 in the presence of Al2O3," Ceramics International, vol. 10, pp. 14-17, 1984.
[22] W. Y. Ching and S.-Y. Ren, "Electronic structures of Si2N2O and Ge2N2O crystals," Physical Review B, vol. 24, pp. 5788-5795, 1981.
[23] M. Ohashi, S. Kanzaki, and H. Tabata, "Processing, Mechanical Properties, and Oxidation Behavior of Silicon Oxynitride Ceramics," Journal of the American Ceramic Society, vol. 74, pp. 109-114, 1991.
[24] K. Kijima and S.-i. Shirasaki, "Nitrogen self-diffusion in silicon nitride," The Journal of Chemical Physics, vol. 65, pp. 2668-2671, 1976.
[25] W. D. Kingery, "Densification during Sintering in the Presence of a Liquid Phase. I. Theory," Journal of Applied Physics, vol. 30, pp. 301-306, 1959.
[26] J. Weiss, "Silicon Nitride Ceramics: Composition, Fabrication Parameters, and Properties," Annual Review of Materials Science, vol. 11, pp. 381-399, 1981.
[27] H. Hausner, G. L. Messing, S. Hirano, and D. K. Gesellschaft, Ceramic powder processing science: proceedings of the second international conference, Berchtesgaden (Bavaria) FRG, October 12-14, 1988: Deutsche Keramische Gesellschaft, 1989.
[28] G. Woetting, H. Feuer, and E. Gugel, "The Influence of Powders and Processing Methods on Microstructure and Properties of Dense Silicon-Nitride," Silicon Nitride Ceramics, vol. 287, pp. 133-146, 1993.
[29] J. S. Vetrano, H. J. Kleebe, E. Hampp, M. J. Hoffmann, M. Rühle, and R. M. Cannon, "Yb2O3-fluxed sintered silicon nitride," Journal of Materials Science, vol. 28, pp. 3529-3538, 1993.
[30] T. Ekström, L. K. L. Falk, and E. M. Knutson-Wedel, "Pressureless-sintered Si3N4-ZrO2 composites with Al2O3 and Y2O3 additions," Journal of Materials Science Letters, vol. 9, pp. 823-826, 1990.
[31] G. Wötting, B. Kanka, and G. Ziegler, "Microstructural Development, Microstructural Characterization and Relation to Mechanical Properties of Dense Silicon Nitride," in Non-Oxide Technical and Engineering Ceramics, S. Hampshire, Ed., ed: Springer Netherlands, pp. 83-96, 1987.
[32] M. J. Hoffmann and G. Petzow, Tailoring of mechanical properties of Si3N4 ceramics: Kluwer Academic, 1994.
[33] C.-M. Wang, X. Pan, M. J. Hoffmann, R. M. Cannon, and M. Riihle, "Grain Boundary Films in Rare-Earth-Glass-Based Silicon Nitride," Journal of the American Ceramic Society, vol. 79, pp. 788-792, 1996.
[34] R. C. Sangster, "FORMATION OF SILICON NITRIDE: FROM THE 19 TH TO THE 21 ST CENTURY," Materials Science Foundations, pp. 948, 2005.
[35] K. Faber and A. Evans, "Crack deflection processes—I. Theory," Acta Metallurgica, vol. 31, pp. 565-576, 1983.
[36] P. F. Becher, "Microstructural design of toughened ceramics," Journal of the American Ceramic Society, vol. 74, pp. 255-269, 1991.
[37] P. F. Becher, C. H. Hsueh, P. Angelini, and T. N. Tiegs, "Toughening Behavior in Whisker‐Reinforced Ceramic Matrix Composites," Journal of the American Ceramic Society, vol. 71, pp. 1050-1061, 1988.
[38] M. J. Hoffmann, "High-Temperature Properties of Yb-Containing Si3N4," in Tailoring of Mechanical Properties of Si3N4 Ceramics. vol. 276, M. Hoffmann and G. Petzow, Eds., ed: Springer Netherlands, pp. 233-244, 1994.
[39] F. Lange, S. C. Singhal, and R. Kuznicki, "Phase Relations and Stability Studies in the Si3N4‐SiO2‐Y2O3 Pseudoternary System," Journal of the American Ceramic Society, vol. 60, pp. 249-252, 1977.
[40] F. Lange, "Importance of phase equilibria on process control of Si 3 N 4 fabrication," in Ceramics for High-Performance Applications III Reliability. Proc. 6 th Army Materials Technology Conference held at Orcas Island, Washington, 10-13 July, 1979. Edited by Lenoe, E. M., p. 275, 1983.
[41] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, 2008.
[42] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8, pp. 902-907, 2008.
[43] Nihara K, "NEW DESIGN CONCEPT OF STRUCTURAL CERAMICS-CERAMIC NANOCOMPOSITES, " Journal of the Ceramic Society of Japan, vol. 99, pp. 974-82, 1991.
[44] C. Ramirez, L. Garzon, P. Miranzo, M. I. Osendi and C. Ocal, "Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy, " Carbon, vol. 49, pp. 3873–3880, 2011.
[45] O. Tapaszto, P. Kun, F. Weber, G. Gergely, K. Balazsi, J. Pfeifer, P. Arato, A. Kidari, S. Hampshire and C. Balazsi, "Silicon nitride based nanocomposites produced by two different sintering methods," Ceramics International, vol. 37, pp. 3457–3461, 2011.
[46] P. Kun, O. Tapaszto, F. Weber and C. Balazsi, "Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites," Ceramics International, vol. 38, pp. 211–216, 2012.
[47] P. Miranzo, E. Garcia, C. Ramirez, J. Gonzalez-Julian, M. Belmonte and M. I. Osendi, "Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures," Journal of the European Ceramic Society, vol. 32, pp. 1847–1854, 2012.
[48] G.C. Wei and P.F. Becher, "Improvements in Mechanical Properties in SiC by the Addition of TiC Particles," Journal of the American Ceramic Society, vol. 67, pp. 571-574, 1984.
[49] R.A. Cutler and A.V. Virkar, "The effect of binder thickness and residual stresses on the fracture toughness of cemented carbides," Journal of Materials Science, vol. 20, pp. 3557-3573, 1985.
[50] F. Van Dijen, A. Kerber, U. Vogt, W. Pfeifer, and M. Schulze, "A Comparative Study of Three Silicon Nitride Powders, Obtained by Three Different Syntheses," Key Engineering Materials, vol. 89, pp. 19-28, 1993.
[51] S.C. Zhang and W.R. Cannon, "Preparation of Silicon Nitride from Silica," Journal of the American Ceramic Society, vol. 67, pp. 691-695, 1984.
[52] Weimer A. W., A. E. Glenn, W. S. David, R. B. Donald, W. M. Jeffrey, "Mechanism and kinetics of the carbothermal nitridation synthesis of α-silicon nitride," Journal of the American Ceramic Society, vol. 80, pp. 2853-2863, 1997.
[53] Inoue H., K. Komeya and A. Tsuge, "Synthesis of silicon nitride powder from silica reduction," Communications of the American Ceramic Society, vol. 65, pp. C-205, 1982.
[54] Durham S. J. P., K. Shanker, and R. A. L. Drew, "Carbothermal synthesis of silicon nitride: effect of reaction conditions," Journal of the American Ceramic Society, vol. 74, pp. 31-37, 1991.
[55] Peck, D., J.Y. Kim and S.W. Choi, "Effect of impurities on the formation of silicon nitride by carbothermal reduction-nitridation of fine hydrated silica powders," Key Engineering Materials, vol. 89-91, pp. 15-18, 1994.
[56] H. Arik, S. Saritas¸, and M. Gündüz, "Production of Si3N4 by carbothermal reduction and nitridation of sepiolite," Journal of Materials Science, vol. 34, pp. 835-842, 1999.
[57] J. Szepvolgyi, F. L. Riley, I. Mohai, I. Bertoti, and E. Gilbart, "Composition and microstructure of nanosized, amorphous and crystalline silicon nitride powders before, during and after densification," Journal of Materials Chemistry, vol. 6, pp. 1175-1186, Jul 1996.
[58] M. Tokita, "Mechanism of spark plasma sintering," in Proceedings of the International Symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, ed S. Miyake and M. Samandi, JWRI, Osaka Universities, Japan, pp. 69-76, 1997.
[59] Mikito Kitayama, Kiyoshi Hirao, Motohiro Toriyama, and Shuzo Kanzaki, "Thermal Conductivity of Beta-Si3N4: I, Effects of Various Microstructural Factors," Journal of the American Ceramic Society, vol. 8, pp. 3105–3112, 1999.
[60] W. D. KINGERY and M. C. McQUARRIE, "Thermal Conductivity: I, Concepts of Measurement and Factors Affecting Thermal Conductivity of Cerarnic MateriaIs," Journal of the American Ceramic Society, vol. 37, pp. 67-72, 1954.
[61] W.C. Oliver and G.M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[62] Ian N. Sneddon, "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile," International Journal of Engineering Science, vol. 3, pp. 47-57, 1965.
[63] Fischer-Cripps AC. Nanoindentation. New York: Springer; 2002.
[64] L.-S. Chang, T.-H. Chuang, W.J. Wei, "Characterization of alumina ceramics by ultrasonic testing, " Materials Characterization, vol. 45, pp. 221-226, 2000.
[65] A. G. Evans and E. A. Charles, "Fracture Toughness Determinations by Indentation," Journal of the American Ceramic Society, vol. 59, pp. 371-372, 1976.
[66] T. Jawhari, A. Roid, and J. Casado, "Raman-Spectroscopic Characterization of Some Commercially Available Carbon-Black Materials," Carbon, vol. 33, pp. 1561-1565, 1995.
[67] T. P. Mernagh, R. P. Cooney, and R. A. Johnson, "Raman-Spectra of Graphon Carbon-Black," Carbon, vol. 22, pp. 39-42, 1984.
[68] V. G. Kesler, S. G. Yanovskaya, G. A. Kachurin, A. F. Leier, and L. M. Logvinsky, "XPS study of ion-beam-assisted formation of Si nanostructures in thin SiO2 layers," Surface and Interface Analysis, vol. 33, pp. 914-917, 2002.
[69] J. Dusza, P. Šajgalik, Z. Bastl, V. Kavečanský, and J. Ďurišin, "Properties of β-silicon nitride whiskers," Journal of Materials Science Letters, vol. 11, pp. 208-211, 1992.
[70] C. P. Gazzara and D. R. Messier, "Determination of Phase Content of Si3n4 by X-Ray-Diffraction Analysis," American Ceramic Society Bulletin, vol. 56, pp. 777-780, 1977.
[71] D. S. Park, H. J. Choi, B. D. Han, H. D. Kim, and D. S. Lim, "Effect of Si2N2O content on the microstructure, properties, and erosion of silicon nitride-Si2N2O in situ composites," Journal of Materials Research, vol. 17, pp. 2275-2280, 2002.
[72] A. W. Weimer, J. R. Cassiday, D. W. Susnitzky, and C. K. Black, "Carbothermal nitridation synthesis of α-Si3N4 powder from pyrolysed rice hulls," Journal of Materials Science, vol. 31, pp. 6005-6013, 1996.
[73] Lei Fan, Zhongqi Shi, Xuefeng Lu, Chao Wang, Meng Chen, Yawen Li, and Hongjie Wang, “Silicon Oxynitride Ceramics Prepared by Plasma Activated Sintering of Nanosized Amorphous Silicon Nitride Powder without Additives ”, Journal of the American Ceramic Society, vol. 96, pp. 2358–2361, 2013.
[74] M. Hnatko, P. Šajgalı́k, Z. Lenčéš, D. Salamon, and F. Monteverde, "Carbon reduction reaction in the Y2O3–SiO2 glass system at high temperature," Journal of the European Ceramic Society, vol. 21, pp. 2797-2801, 2001.
[75] Jian-Feng Yang, " Fabrication of Low-Shrinkage, Porous Silicon Nitride Ceramics by Addition of a Small Amount of Carbon," Journal of the American Ceramic Society, vol. 84, pp. 1639-1641, 2001.
[76] Dong-Soo Park, Hyun-Ju Choi, Byung-Dong Han, Hai-Doo Kim, and Dae-Soon Lim, " Effect of Si2N2O content on the microstructure, properties, and erosion of silicon nitride–Si2N2O in situ composites," Journal of Materials Research, vol. 17, pp. 2275-2280, 2002.
[77] C. Balázsi, F. S. Cinar, O. Addemir, F. Wéber, and P. Arató, "Manufacture and examination of C/Si3N4 nanocomposites," Journal of the European Ceramic Society, vol. 24, pp. 3287-3294, 2004.
[78] M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Modeling and simulation of grain growth in Si3N4—I. Anisotropic Ostwald ripening," Acta Materialia, vol. 46, pp. 6541-6550, 1998.
[79] A. Chokshi, A. Rosen, J. Karch, and H. Gleiter, "On the validity of the Hall-Petch relationship in nanocrystalline materials," Scripta Metallurgica, vol. 23, pp. 1679-1684, 1989.
[80] T. Nishimura, M. Mitomo, H. Hirotsuru, and M. Kawahara, "Fabrication of silicon nitride nano-ceramics by spark plasma sintering," Journal of materials science letters, vol. 14, pp. 1046-1047, 1995.
[81] Kiyoshi Hirao,Takaaki Nagaoka, Manuel E. Brito, and Shuzo Kanzaki, " Microstructure Control of Silicon Nitride by Seeding with Rodlike Beta-Silicon Nitride Particles," Journal of the American Ceramic Society, vol. 77, pp. 1857-1862, 1994.
[82] M. Mitomo, H. Hirotsuru, H. Suematsu, and T. Nishimura, "Fine‐Grained Silicon Nitride Ceramics Prepared from β‐Powder," Journal of the American Ceramic Society, vol. 78, pp. 211-214, 1995.
[83] K. Watari, M. E. Brito, M. Toriyama, and K. Ishizaka, "Thermal conductivity of Y2O3-doped Si3N4 ceramics at 4 to 1000 K," Journal of MATERIALS SCIENCE LETTERS, vol. 18, pp. 865-867, 1999.
[84] J. I. Paredes, S. Villar-Rodil, A. Martınez-Alonso, and J. M. D. Tascon, " Graphene Oxide Dispersions in Organic Solvents," Langmuir, vol. 24, pp. 10560-10564, 2008.
[85] Cristina Gómez-Navarro, Marko Burghard, and Klaus Kern, " Elastic Properties of Chemically Derived Single Graphene Sheets,"Nano letters, vol. 8, pp. 2045-2049, 2008.
[86] S. K. Ray, S. Das, C. K. Maiti, S. K. Lahiri, and N. B. Chakraborti, "Effect of reactive-ion bombardment on the properties of silicon nitride and oxynitride films deposited by ion-beam sputtering, " J. Appl. Phys, vol. 75, pp. 8145–8152, 1994.
[87] Joo Han Kim and Ki Woong Chung, " Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering, " J. Appl. Phys, vol. 83, pp.5831–5839, 1998.
[88] V. Gunko, J. Colloid Interface Sci. vol. 228, No. 157, 2000.
[89] J. Pezoldt, Ch. Hummel, F. Schwierz, " Graphene field effect transistor improvement by graphene–silicon dioxide interface modification," Physica E., vol. 44, pp. 985-988, 2012.
[90] A. C. Ferrari, J. C. Meyer, V. Scardaci, "Raman spectrum of graphene and graphene layers," Physica Review Letters, vol. 97, pp. 187401-1-187401-4, 2006.
[91] Walker LS, Marotto VR, Rafiee MA, Koratkar N, "Toughening in graphene ceramic composites," ACS Nano, vol. 4, pp. 3182–3190, 2011.