| 研究生: |
張廖佩怡 Chang-Liao, Pey-Yi |
|---|---|
| 論文名稱: |
探討Aurora-C在細胞週期所扮演之角色 Studying the role of Aurora-C in cell cycle regulation |
| 指導教授: |
洪良宜
Hung, Liang-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | Aurora-C 、染色體移動複合體 、腫瘤生成過程 |
| 外文關鍵詞: | Aurora-C, chromosomal passenger complex, tumorigenesis |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
極光激酶家族 (Aurora Kinase family) 為serine/threonine蛋白激酶,在哺乳類動物中有Aurora-A、-B及-C三個成員。根據過去文獻報導其主要參與在調控有絲分裂及減數分裂的過程,因此當功能異常或表現量不正常時,會導致細胞染色體異常,進而造成腫瘤的生成。Aurora-C是該家族成員中研究最少的,最早被發現僅侷限在睪丸組織中表現。近幾年來,許多研究指出,在癌組織及癌細胞當中都可發現Aurora-C有過量表現的情形,但目前對於其在腫瘤形成過程,所扮演的角色及分子調控機制仍是未知。當過量表現Aurora-C時,會干擾染色體移動複合體 (chromosomal passenger complex) 在著絲粒上的座落位置及其蛋白質穩定度,進而導致紡綞體組裝檢查點 (spindle assembly checkpoint) 的活化受到影響。由以上的結果顯示, Aurora-C可能不具有調控紡綞體組裝檢查點的功能。另外,利用偵測細胞增殖速率及移動能力的方法,發現當細胞表現Aurora-C野生態及激酶活化態的情況下,會增加細胞增殖速率及移行能力,但在表現激酶不活化態的情況下,則無此現象。利用xenograft model也觀察到當細胞過量表現野生態及激酶活化態的Aurora-C會促進腫瘤的形成,但同樣的情況卻不會在表現激酶不活化態的組別中觀察到。因此,推論當過量表現Aurora-C時,藉由干擾CPC的座落位置及其蛋白穩定度,進而導致紡綞體組裝檢查點的啟動受到影響,可能為其促進腫瘤形成的原因。
The mammalian Aurora kinases, which includes Aurora-A, -B and -C, are a conserved family of serine/threonine kinase. Auroras regulate numerous mitotic and meiotic events. The dysfunction or overexpression of Auroras can result in aneuploidy, a contributing factor for tumorigenesis. Aurora-C, the least known of Aurora kinases, was original identified as a testis-restricted expression kinase. Recently, a growing body of evidence indicated that Aurora-C is overexpressed in many human primary cancers and cancer cell lines. But the molecular mechanism and physiological roles for Aurora-C in tumorigenesis remain unclear. Overexpression of Aurora-C impairs the centromeric localization and protein stability of chromosomal passenger complex (CPC), therefore interfering the activity of spindle assembly checkpoint (SAC). Taken together, our findings suggest that Aurora-C may not involve in SAC activation. In addition, by cell proliferation assay and migration assay, cells with Wild type (WT) or Kinase hyperactive (KA) expression can increase the cellular proliferation and migration ability, but not the Kinase dead (KD), Aurora-C expression. Animal xenograft analysis showed that overexpressed Aurora-C/WT or KA can enhance the tumor formation. Surprisingly, the Aurora-C/KD-expressed cells do not form tumor. Base on these results, Overexpressed Aurora-C contributes to tumor formation may through impair the SAC by interfering the localization and promoting the degradation of CPC.
1. Bharadwaj, R., and Yu, H. (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016-2027.
2. Kim, S., and Yu, H. Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol.
3. Michaelis, C., Ciosk, R., and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45.
4. Brito, D.A., and Rieder, C.L. (2006). Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16, 1194-1200.
5. Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8, 379-393.
6. Waters, J.C., Chen, R.H., Murray, A.W., and Salmon, E.D. (1998). Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol 141, 1181-1191.
7. Mapelli, M., and Musacchio, A. (2007). MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr Opin Struct Biol 17, 716-725.
8. Mao, Y., Abrieu, A., and Cleveland, D.W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 114, 87-98.
9. Skoufias, D.A., Andreassen, P.R., Lacroix, F.B., Wilson, L., and Margolis, R.L. (2001). Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A 98, 4492-4497.
10. Burton, J.L., and Solomon, M.J. (2007). Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev 21, 655-667.
11. Fang, G. (2002). Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13, 755-766.
12. Cimini, D. (2007). Detection and correction of merotelic kinetochore orientation by Aurora B and its partners. Cell Cycle 6, 1558-1564.
13. Vader, G., Cruijsen, C.W., van Harn, T., Vromans, M.J., Medema, R.H., and Lens, S.M. (2007). The chromosomal passenger complex controls spindle checkpoint function independent from its role in correcting microtubule kinetochore interactions. Mol Biol Cell 18, 4553-4564.
14. Ruchaud, S., Carmena, M., and Earnshaw, W.C. (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8, 798-812.
15. Kallio, M.J., McCleland, M.L., Stukenberg, P.T., and Gorbsky, G.J. (2002). Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12, 900-905.
16. Hauf, S., Cole, R.W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C.L., and Peters, J.M. (2003). The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161, 281-294.
17. Pinsky, B.A., Kung, C., Shokat, K.M., and Biggins, S. (2006). The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8, 78-83.
18. Ditchfield, C., Johnson, V.L., Tighe, A., Ellston, R., Haworth, C., Johnson, T., Mortlock, A., Keen, N., and Taylor, S.S. (2003). Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161, 267-280.
19. Liu, D., Vader, G., Vromans, M.J., Lampson, M.A., and Lens, S.M. (2009). Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350-1353.
20. Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M., and Desai, A. (2006). The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983-997.
21. Andrews, P.D., Ovechkina, Y., Morrice, N., Wagenbach, M., Duncan, K., Wordeman, L., and Swedlow, J.R. (2004). Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6, 253-268.
22. Lan, W., Zhang, X., Kline-Smith, S.L., Rosasco, S.E., Barrett-Wilt, G.A., Shabanowitz, J., Hunt, D.F., Walczak, C.E., and Stukenberg, P.T. (2004). Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14, 273-286.
23. Li, J.J., and Li, S.A. (2006). Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 111, 974-984.
24. Keen, N., and Taylor, S. (2004). Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4, 927-936.
25. Carmena, M., and Earnshaw, W.C. (2003). The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4, 842-854.
26. Kufer, T.A., Sillje, H.H., Korner, R., Gruss, O.J., Meraldi, P., and Nigg, E.A. (2002). Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158, 617-623.
27. Hirota, T., Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Nitta, M., Hatakeyama, K., and Saya, H. (2003). Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585-598.
28. Bolanos-Garcia, V.M. (2005). Aurora kinases. Int J Biochem Cell Biol 37, 1572-1577.
29. Tseng, T.C., Chen, S.H., Hsu, Y.P., and Tang, T.K. (1998). Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators. DNA Cell Biol 17, 823-833.
30. Hu, H.M., Chuang, C.K., Lee, M.J., Tseng, T.C., and Tang, T.K. (2000). Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DNA Cell Biol 19, 679-688.
31. Fu, J., Bian, M., Jiang, Q., and Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5, 1-10.
32. Giet, R., Petretti, C., and Prigent, C. (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15, 241-250.
33. Katayama, H., Brinkley, W.R., and Sen, S. (2003). The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22, 451-464.
34. Kollareddy, M., Dzubak, P., Zheleva, D., and Hajduch, M. (2008). Aurora kinases: structure, functions and their association with cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152, 27-33.
35. Zhou, H., Kuang, J., Zhong, L., Kuo, W.L., Gray, J.W., Sahin, A., Brinkley, B.R., and Sen, S. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20, 189-193.
36. Chen, Y.J., Chen, C.M., Twu, N.F., Yen, M.S., Lai, C.R., Wu, H.H., Wang, P.H., and Yuan, C.C. (2009). Overexpression of Aurora B is associated with poor prognosis in epithelial ovarian cancer patients. Virchows Arch 455, 431-440.
37. Hontz, A.E., Li, S.A., Lingle, W.L., Negron, V., Bruzek, A., Salisbury, J.L., and Li, J.J. (2007). Aurora a and B overexpression and centrosome amplification in early estrogen-induced tumor foci in the Syrian hamster kidney: implications for chromosomal instability, aneuploidy, and neoplasia. Cancer Res 67, 2957-2963.
38. Ota, T., Suto, S., Katayama, H., Han, Z.B., Suzuki, F., Maeda, M., Tanino, M., Terada, Y., and Tatsuka, M. (2002). Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 62, 5168-5177.
39. Gautschi, O., Heighway, J., Mack, P.C., Purnell, P.R., Lara, P.N., Jr., and Gandara, D.R. (2008). Aurora kinases as anticancer drug targets. Clin Cancer Res 14, 1639-1648.
40. Takahashi, T., Futamura, M., Yoshimi, N., Sano, J., Katada, M., Takagi, Y., Kimura, M., Yoshioka, T., Okano, Y., and Saji, S. (2000). Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res 91, 1007-1014.
41. Wiseman, S.M., Masoudi, H., Niblock, P., Turbin, D., Rajput, A., Hay, J., Bugis, S., Filipenko, D., Huntsman, D., and Gilks, B. (2007). Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol 14, 719-729.
42. Sasai, K., Katayama, H., Stenoien, D.L., Fujii, S., Honda, R., Kimura, M., Okano, Y., Tatsuka, M., Suzuki, F., Nigg, E.A., et al. (2004). Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton 59, 249-263.
43. Dutertre, S., Hamard-Peron, E., Cremet, J.Y., Thomas, Y., and Prigent, C. (2005). The absence of p53 aggravates polyploidy and centrosome number abnormality induced by Aurora-C overexpression. Cell Cycle 4, 1783-1787.
44. Spengler, D. (2007). Aurora-C-T191D is a hyperactive Aurora-C mutant. Cell Cycle 6, 1803-1804.
45. Xu, Z., Ogawa, H., Vagnarelli, P., Bergmann, J.H., Hudson, D.F., Ruchaud, S., Fukagawa, T., Earnshaw, W.C., and Samejima, K. (2009). INCENP-aurora B interactions modulate kinase activity and chromosome passenger complex localization. J Cell Biol 187, 637-653.
46. Wei, Y., Mizzen, C.A., Cook, R.G., Gorovsky, M.A., and Allis, C.D. (1998). Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95, 7480-7484.
47. Li, X., Sakashita, G., Matsuzaki, H., Sugimoto, K., Kimura, K., Hanaoka, F., Taniguchi, H., Furukawa, K., and Urano, T. (2004). Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J Biol Chem 279, 47201-47211.
48. Taylor, S.S., Hussein, D., Wang, Y., Elderkin, S., and Morrow, C.J. (2001). Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J Cell Sci 114, 4385-4395.
49. Stetler-Stevenson, W.G., Hewitt, R., and Corcoran, M. (1996). Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin Cancer Biol 7, 147-154.
50. McCawley, L.J., and Matrisian, L.M. (2000). Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6, 149-156.
51. Stamenkovic, I. (2000). Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10, 415-433.
52. Liotta, L.A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C.M., and Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67-68.
53. Rao, J.S., Yamamoto, M., Mohaman, S., Gokaslan, Z.L., Fuller, G.N., Stetler-Stevenson, W.G., Rao, V.H., Liotta, L.A., Nicolson, G.L., and Sawaya, R.E. (1996). Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14, 12-18.
54. Nguyen, H.G., Makitalo, M., Yang, D., Chinnappan, D., St Hilaire, C., and Ravid, K. (2009). Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J 23, 2741-2748.
55. Klein, U.R., Nigg, E.A., and Gruneberg, U. (2006). Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol Biol Cell 17, 2547-2558.
56. Yan, X., Cao, L., Li, Q., Wu, Y., Zhang, H., Saiyin, H., Liu, X., Zhang, X., Shi, Q., and Yu, L. (2005). Aurora C is directly associated with Survivin and required for cytokinesis. Genes Cells 10, 617-626.
57. Slattery, S.D., Mancini, M.A., Brinkley, B.R., and Hall, R.M. (2009). Aurora-C kinase supports mitotic progression in the absence of Aurora-B. Cell Cycle 8, 2984-2994.
58. Slattery, S.D., Moore, R.V., Brinkley, B.R., and Hall, R.M. (2008). Aurora-C and Aurora-B share phosphorylation and regulation of CENP-A and Borealin during mitosis. Cell Cycle 7, 787-795.
59. Qi, G., Ogawa, I., Kudo, Y., Miyauchi, M., Siriwardena, B.S., Shimamoto, F., Tatsuka, M., and Takata, T. (2007). Aurora-B expression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Arch 450, 297-302.
60. Kim, D., Kim, S., Koh, H., Yoon, S.O., Chung, A.S., Cho, K.S., and Chung, J. (2001). Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15, 1953-1962.
61. Shukla, S., Maclennan, G.T., Hartman, D.J., Fu, P., Resnick, M.I., and Gupta, S. (2007). Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer 121, 1424-1432.
62. Davies, H., Hunter, C., Smith, R., Stephens, P., Greenman, C., Bignell, G., Teague, J., Butler, A., Edkins, S., Stevens, C., et al. (2005). Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65, 7591-7595.
校內:2016-07-26公開