簡易檢索 / 詳目顯示

研究生: 許毓芸
Hsu, Yu-Yun
論文名稱: 利用環糊精與聚胺酸兩親分子形成之熱感型水膠
Thermo-Responsive Supramolecular Hydrogels Formed by Cyclodextrin and Peptide Amphiphiles
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 包嵌複合體溫度應答環糊精聚胺基酸兩親分子
外文關鍵詞: inclusion complex, thermo-responsive, cyclodextrins, peptides, amphiphiles
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用環糊精(cyclodextrins,CDs)與聚胺基酸兩親分子(peptide amphiphiles)形成包嵌複合體(inclusion complex),製備溫度敏感型的水膠。藉由改變疏水鏈長度、胺基酸單體的種類、環糊精的種類、聚胺基酸/環糊精比例與聚胺基酸濃度以調控水膠的物理性質,如轉化溫度與成膠濃度等,並藉由各種實驗分析探討聚胺基酸與環糊精的分子間作用力,以及分子間的排列方式。本實驗以具有直碳鏈的一級胺作為起始劑,對胺基酸進行開環聚合反應,得到不同親疏水鏈段長度的聚胺基酸兩親分子,其聚合度約為20,接近聚合反應時的單體與起始劑的比值。研究水膠的凝膠-溶膠轉化溫度與水膠濃度的關係,以流變儀驗證水膠性質與溫度的關係,並比較不同水膠的黏彈性質。為了研究聚胺基酸與環糊精之間的疏水作用力與氫鍵作用力,以及兩者形成水膠後在空間中的排列方式,以1H NMR證明環糊精可串入碳鏈而形成包嵌複合體,並以XRD確認環糊精的分子間氫鍵與結晶性質。由FTIR分析聚胺基酸鏈在加入環糊精後的二級結構變化,其中C16Thr20與β-CD形成的水膠有較高比例的分子間氫鍵,具有較高的凝膠-溶膠轉化溫度。以SAXS分析聚胺基酸與環糊精的堆疊方式,其中C12Thr20與α-CD形成雙層(lamellar)堆疊,C16Thr20與β-CD則無特定的堆疊方式。

    In this study, we reported the preparation of thermo-responsive supramolecular hydrogels via inclusion complexation between cyclodextrins (CDs) and peptide amphiphiles (PAs). Alkylamine were used as the macroinitiator of ring-opening polymerization (ROP) to synthesize PAs. CDs threaded onto alkyl chain and form inclusion complex. The network structure of hydrogels was composed of hydrophobic interactions between alkyl chain and inner cavity of CDs, hydrogen bonding between CDs and side chain of PAs. The gel-sol transition temperature and gelation concentration were tuned by alkyl chain length, type of amino acids and CDs, the molar ratio of CDs and PAs. The secondary structure of peptides was mainly random coil. C12Thr20+α-CD hydrogels formed lamellar packing and the one bilayer thickness decreased with increasing temperature. The intelligent hydrogels could be promising in tissue engineering.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.1.1 生醫材料 1 1.1.2 聚胺基酸與蛋白質 2 1.1.3 水膠 3 1.1.4 包嵌複合體 3 1.2 研究動機與目的 4 第二章 文獻回顧 5 2.1 聚胺基酸 5 2.1.1 蛋白質與胺基酸 5 2.1.2 胺基酸之基本性質 5 2.1.3 蛋白質之結構 7 2.1.4 胺基酸之聚合 10 2.2 水膠 12 2.2.1 水膠之定義 12 2.2.2 水膠之種類 12 2.2.3 聚胺基酸水膠應用於生物材料 14 2.3 包嵌複合體 15 2.3.1 環糊精發展史 15 2.3.2 主體-客體化學 16 2.3.3 環糊精之包嵌複合作用 17 2.3.4 以環糊精製備智慧型水膠 19 第三章 實驗方法與步驟 21 3.1 實驗藥品 21 3.2 實驗儀器與原理 23 3.2.1 液態核磁共振儀 23 3.2.2 基質輔助雷射脫附游離飛行時間質譜儀 23 3.2.3 X光繞射儀 24 3.2.4 流變儀 24 3.2.5 傅立葉轉換紅外線光譜儀 24 3.2.6 小角度X光散射儀 26 3.3 聚胺基酸之合成 27 3.3.1 N-carboxylanhydrides (NCAs)開環聚合法 27 3.3.2 乾燥溶劑 27 3.3.3 Z-L-lysine、benzyl-L-glutamate NCAs之製備 27 3.3.4 N-Boc-O-benzyl-L-threonine NCAs之製備 28 3.3.5 以一級胺對NCAs開環合成聚胺基酸 29 3.3.6 去除聚胺基酸之保護基Z group 29 3.3.7 去除聚胺基酸之保護基benzyl group 29 3.4 超分子(supramolecular)水膠之性質測試 30 3.4.1 以聚胺基酸與環糊精製備水膠 30 3.4.2 聚胺基酸與環糊精之包嵌複合性質 30 3.4.3 包嵌複合體之結晶性質 31 3.4.4 凝膠-溶膠轉化溫度 31 3.4.5 超分子水膠之流變性質 31 3.4.6 聚胺基酸之二級結構 32 3.4.7 聚胺基酸之堆疊 32 第四章 結果與討論 33 4.1 聚胺基酸之合成分析 33 4.1.1 聚胺基酸之聚合度 33 4.1.2 聚胺基酸之分子量 38 4.2 聚胺基酸與環糊精之包嵌複合性質 41 4.2.1 超分子水膠之形成 41 4.2.2 聚胺基酸與環糊精之疏水作用力 45 4.2.3 包嵌複合體之結晶性質 48 4.3 超分子水膠之物理性質 51 4.3.1 水膠濃度與溫度之關係 51 4.3.2 超分子水膠之流變性質 52 4.4 超分子水膠之結構 55 4.4.1 聚胺基酸之二級結構 55 4.4.2 聚胺基酸之堆疊 57 第五章 結論 61 參考文獻 62

    1. Nelson, D. L.; Lehninger, A. L.; Cox, M. M. Lehninger principles of biochemistry. Macmillan: 2008.
    2. Ambrogelly, A.; Palioura, S.; Söll, D. Natural expansion of the genetic code. Nature chemical biology 2007, 3 (1), 29-35.
    3. Rodnina, M. V.; Beringer, M.; Wintermeyer, W. How ribosomes make peptide bonds. Trends in biochemical sciences 2007, 32 (1), 20-26.
    4. Dobson, C. M. The nature and significance of protein folding. Mechanisms of protein folding 2000, 1-33.
    5. Creighton, T. E. Proteins: structures and molecular properties. Macmillan: 1993.
    6. Wolfenden, R.; Andersson, L.; Cullis, P.; Southgate, C. Affinities of amino acid side chains for solvent water. Biochemistry 1981, 20 (4), 849-855.
    7. Allen, R. H.; Stabler, S. P.; Lindenbaum, J. Serum betaine, N, N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism 1993, 42 (11), 1448-1460.
    8. Schulz, G. E.; Schirmer, R. H. Principles of protein structure. Springer-Verlag KG.: 1979.
    9. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-2637.
    10. Russel, P. J. iGenetics: A Molecular Approach. 3 uppl. Pearson Education.(828 s). ISBN: 2010.
    11. Branden, C. I. Introduction to protein structure. Garland Science: 1999.
    12. McKee, T.; McKee, J. R. Biochemistry: The molecular basis of life. Oxford University Press: 2009.
    13. Daly, W. H.; Poché, D. The preparation of N-carboxyanhydrides of α-amino acids using bis (trichloromethyl) carbonate. Tetrahedron Letters 1988, 29 (46), 5859-5862.
    14. Poche, D. S.; Moore, M. J.; Bowles, J. L. An unconventional method for purifying the N-carboxyanhydride derivatives of γ-alkyl-L-glutamates. Synthetic communications 1999, 29 (5), 843-854.
    15. Deming, T. J. Living polymerization of α‐amino acid‐N‐carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (17), 3011-3018.
    16. Cheng, J.; Deming, T. J. Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. In Peptide-based materials, Springer: 2012; pp 1-26.
    17. Tarcha, P. J. Polymers for controlled drug delivery. CRC press Boca Raton, FL: 1991.
    18. Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules. Chemical reviews 2004, 104 (3), 1201-1218.
    19. Adams, D. J.; Topham, P. D. Peptide conjugate hydrogelators. Soft Matter 2010, 6 (16), 3707-3721.
    20. Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002, 417 (6887), 424-428.
    21. Chen, C.; Wu, D.; Fu, W.; Li, Z. Peptide hydrogels assembled from nonionic alkyl-polypeptide amphiphiles prepared by ring-opening polymerization. Biomacromolecules 2013, 14 (8), 2494-2498.
    22. Miyata, T.; Asami, N.; Uragami, T. A reversibly antigen-responsive hydrogel. Nature 1999, 399 (6738), 766-769.
    23. Buwalda, S. J.; Boere, K. W.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. Hydrogels in a historical perspective: from simple networks to smart materials. Journal of controlled release 2014, 190, 254-273.
    24. Zhang, X.-Z.; Wu, D.-Q.; Chu, C.-C. Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 2004, 25 (17), 3793-3805.
    25. Dinarvand, R.; D'Emanuele, A. The use of thermoresponsive hydrogels for on-off release of molecules. Journal of controlled release 1995, 36 (3), 221-227.
    26. Salgado-Rodrıguez, R.; Licea-Claverıe, A.; Arndt, K. Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. European polymer journal 2004, 40 (8), 1931-1946.
    27. Ishihara, K.; Hamada, N.; Kato, S.; Shinohara, I. Photoinduced swelling control of amphiphilic azoaromatic polymer membrane. Journal of Polymer Science: Polymer Chemistry Edition 1984, 22 (1), 121-128.
    28. Ostroha, J.; Pong, M.; Lowman, A.; Dan, N. Controlling the collapse/swelling transition in charged hydrogels. Biomaterials 2004, 25 (18), 4345-4353.
    29. (a) Koutsopoulos, S.; Unsworth, L. D.; Nagai, Y.; Zhang, S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proceedings of the National Academy of Sciences 2009, 106 (12), 4623-4628; (b) Hoare, T. R.; Kohane, D. S. Hydrogels in drug delivery: progress and challenges. Polymer 2008, 49 (8), 1993-2007.
    30. Mellati, A.; Dai, S.; Bi, J.; Jin, B.; Zhang, H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv. 2014, 4 (109), 63951-63961.
    31. Collier, J. H.; Rudra, J. S.; Gasiorowski, J. Z.; Jung, J. P. Multi-component extracellular matrices based on peptide self-assembly. Chemical Society Reviews 2010, 39 (9), 3413-3424.
    32. Park, M. H.; Joo, M. K.; Choi, B. G.; Jeong, B. Biodegradable thermogels. Accounts of chemical research 2011, 45 (3), 424-433.
    33. Moon, H. J.; Park, M. H.; Joo, M. K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chemical Society Reviews 2012, 41 (14), 4860-4883.
    34. Huang, J.; Hastings, C. L.; Duffy, G. P.; Kelly, H. M.; Raeburn, J.; Adams, D. J.; Heise, A. Supramolecular hydrogels with reverse thermal gelation properties from (oligo) tyrosine containing block copolymers. Biomacromolecules 2012, 14 (1), 200-206.
    35. Matson, J. B.; Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chemical Communications 2012, 48 (1), 26-33.
    36. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294 (5547), 1684-1688.
    37. Villiers, A. Compt. rend., 112, 435 (1891) A. Villiers, Compt. rend 1891, 112, 536.
    38. Schardinger, F. Acetongärung. Wien. Klin. Wochenschr 1904, 17, 207-209.
    39. Schardinger, F. Bildung kristallisierter polysaccharide (dextrine) aus stärkekleister durch microben. Zentralbl. Bakteriol. Parasitenk. Abt. II 1911, 29, 188-197.
    40. Pringsheim, H.; Walton, R. A Comprehensive Survey of Starch Chemistry. Chemical Catalog Co., Inc., New York, NY 1928, 35.
    41. Freudenberg, K.; Rapp, W. Zur Kenntnis der Stärke und der Schardinger‐Dextrine. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1936, 69 (9), 2041-2045.
    42. Freudenberg, K.; Cramer, F.; Plieninger, H. Inclusion compounds of physiologically active organic compounds. German patent 1953, 895769.
    43. Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D. Inclusion compounds: Physical properties and applications. Academic Press: 1984; Vol. 3.
    44. Duchene, D.; Wouessidjewe, D. Pharmaceutical uses of cyclodextrins and derivatives. Drug development and industrial pharmacy 1990, 16 (17), 2487-2499.
    45. Lehn, J.-M. Supramolecular chemistry. Science 1993, 260, 1762-1763.
    46. Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Supramolecular chemistry in water. Angewandte Chemie International Edition 2007, 46 (14), 2366-2393.
    47. Lodish, H. Molecular cell biology. Macmillan: 2008.
    48. Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry. University Science Books: 2006.
    49. Shityakov, S.; Broscheit, J.; Foerster, C. α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies. International journal of nanomedicine 2012, 7, 3211.
    50. Dighe, M. K. Host Guest Chemistry of Triaroylbenzene Derivatives. ProQuest: 2008.
    51. Szejtli, J. Cyclodextrin technology. Springer Science & Business Media: 1988; Vol. 1.
    52. Uekama, K.; Otagiri, M. Cyclodextrins in drug carrier systems. Critical reviews in therapeutic drug carrier systems 1986, 3 (1), 1-40.
    53. Harries, D.; Rau, D. C.; Parsegian, V. A. Solutes probe hydration in specific association of cyclodextrin and adamantane. Journal of the American Chemical Society 2005, 127 (7), 2184-2190.
    54. Rekharsky, M. V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chemical reviews 1998, 98 (5), 1875-1918.
    55. Guerrero-Martínez, A.; Montoro, T.; Viñas, M. H.; González-Gaitano, G.; Tardajos, G. Study of the interaction between a nonyl phenyl ether and β-cyclodextrin: Declouding nonionic surfactant solutions by complexation. The Journal of Physical Chemistry B 2007, 111 (6), 1368-1376.
    56. Veiga, F. J. B.; Fernandes, C. M.; Carvalho, R. A.; Geraldes, C. F. G. C. Molecular modelling and 1H-NMR: ultimate tools for the investigation of tolbutamide: beta-cyclodextrin and tolbutamide: hydroxypropyl-beta-cyclodextrin complexes2001.
    57. Taulier, N.; Chalikian, T. V. γ-Cyclodextrin forms a highly compressible complex with 1-adamantanecarboxylic acid. The Journal of Physical Chemistry B 2008, 112 (31), 9546-9549.
    58. Choi, H. S.; Kontani, K.; Huh, K. M.; Sasaki, S.; Ooya, T.; Lee, W. K.; Yui, N. Rapid induction of thermoreversible hydrogel formation based on poly (propylene glycol)‐grafted dextran inclusion complexes. Macromolecular Bioscience 2002, 2 (6), 298-303.
    59. Chen, Y.; Pang, X. H.; Dong, C. M. Dual Stimuli‐Responsive Supramolecular Polypeptide‐Based Hydrogel and Reverse Micellar Hydrogel Mediated by Host–Guest Chemistry. Advanced Functional Materials 2010, 20 (4), 579-586.
    60. De Lisi, R.; Lazzara, G.; Milioto, S.; Muratore, N. Characterization of the cyclodextrin-surfactant interactions by volume and enthalpy. The Journal of Physical Chemistry B 2003, 107 (47), 13150-13157.
    61. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chemical reviews 1998, 98 (5), 1743-1754.
    62. Harada, A. Cyclodextrin-based molecular machines. Accounts of Chemical Research 2001, 34 (6), 456-464.
    63. Li, J.; Harada, A.; Kamachi, M. Sol–gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly (ethylene glycol) s in aqueous solution. Polymer journal 1994, 26 (9), 1019-1026.
    64. Li, J.; Li, X.; Ni, X.; Wang, X.; Li, H.; Leong, K. W. Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 2006, 27 (22), 4132-4140.
    65. Sabadini, E.; Cosgrove, T. Inclusion complex formed between star-poly (ethylene glycol) and cyclodextrins. Langmuir 2003, 19 (23), 9680-9683.
    66. Huh, K. M.; Ooya, T.; Lee, W. K.; Sasaki, S.; Kwon, I. C.; Jeong, S. Y.; Yui, N. Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly (ethylene glycol) grafted dextran and α-cyclodextrin. Macromolecules 2001, 34 (25), 8657-8662.
    67. Huh, K. M.; Cho, Y. W.; Chung, H.; Kwon, I. C.; Jeong, S. Y.; Ooya, T.; Lee, W. K.; Sasaki, S.; Yui, N. Supramolecular Hydrogel Formation Based on Inclusion Complexation Between Poly (ethylene glycol)‐Modified Chitosan and α‐Cyclodextrin. Macromolecular bioscience 2004, 4 (2), 92-99.
    68. Ruel-Gariepy, E.; Leroux, J.-C. In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004, 58 (2), 409-426.
    69. Taira, T.; Suzaki, Y.; Osakada, K. Thermosensitive hydrogels composed of cyclodextrin pseudorotaxanes. Role of [3] pseudorotaxane in the gel formation. Chemical Communications 2009, (45), 7027-7029.
    70. van de Manakker, F.; van der Pot, M.; Vermonden, T.; van Nostrum, C. F.; Hennink, W. E. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules 2008, 41 (5), 1766-1773.
    71. Ren, L.; He, L.; Sun, T.; Dong, X.; Chen, Y.; Huang, J.; Wang, C. Dual‐Responsive Supramolecular Hydrogels from Water‐Soluble PEG‐Grafted Copolymers and Cyclodextrin. Macromolecular bioscience 2009, 9 (9), 902-910.
    72. Mezger, T. G. The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network GmbH & Co KG: 2006.
    73. Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. Construction of Chemical‐Responsive Supramolecular Hydrogels from Guest‐Modified Cyclodextrins. Chemistry–An Asian Journal 2008, 3 (4), 687-695.
    74. Gibson, M. I.; Cameron, N. R. Experimentally facile controlled polymerization of N‐carboxyanhydrides (NCAs), including O‐benzyl‐L‐threonine NCA. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (11), 2882-2891.
    75. Schmidt, B. V.; Hetzer, M.; Ritter, H.; Barner-Kowollik, C. Complex macromolecular architecture design via cyclodextrin host/guest complexes. Progress in Polymer Science 2014, 39 (1), 235-249.
    76. Tan, S.; Ladewig, K.; Fu, Q.; Blencowe, A.; Qiao, G. G. Cyclodextrin‐Based Supramolecular Assemblies and Hydrogels: Recent Advances and Future Perspectives. Macromolecular rapid communications 2014, 35 (13), 1166-1184.
    77. Sabadini, E.; Cosgrove, T.; do Carmo Egídio, F. Solubility of cyclomaltooligosaccharides (cyclodextrins) in H 2 O and D 2 O: a comparative study. Carbohydrate research 2006, 341 (2), 270-274.
    78. Bai, D.; Khin, C. C.; Chen, S. B.; Tsai, C.-C.; Chen, B.-H. Interaction between a nonionic surfactant and a hydrophobically modified 2-hydroxyethyl cellulose. The Journal of Physical Chemistry B 2005, 109 (11), 4909-4916.
    79. Firman, P.; Haase, D.; Jen, J.; Kahlweit, M.; Strey, R. On the effect of electrolytes on the mutual solubility between water and nonionic amphiphiles. Langmuir 1985, 1 (6), 718-724.
    80. Akiyoshi, K.; Ueminami, A.; Kurumada, S.; Nomura, Y. Self-association of cholesteryl-bearing poly (L-lysine) in water and control of its secondary structure by host-guest interaction with cyclodextrin. Macromolecules 2000, 33 (18), 6752-6756.
    81. van de Manakker, F.; Kroon-Batenburg, L. M.; Vermonden, T.; van Nostrum, C. F.; Hennink, W. E. Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes. Soft Matter 2010, 6 (1), 187-194.
    82. Hulliger, J.; Rogin, P.; Quintel, A.; Rechsteiner, P.; König, O.; Wübbenhorst, M. The crystallization of polar, channel‐type inclusion compounds: Property‐directed superamolecular synthesis. Advanced materials 1997, 9 (8), 677-680.
    83. Liu, G.; Jin, Q.; Liu, X.; Lv, L.; Chen, C.; Ji, J. Biocompatible vesicles based on PEO-b-PMPC/α-cyclodextrin inclusion complexes for drug delivery. Soft Matter 2011, 7 (2), 662-669.
    84. Breedveld, V.; Nowak, A. P.; Sato, J.; Deming, T. J.; Pine, D. J. Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 2004, 37 (10), 3943-3953.
    85. Carlsen, A.; Lecommandoux, S. Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
    86. LoPresti, C.; Lomas, H.; Massignani, M.; Smart, T.; Battaglia, G. Polymersomes: nature inspired nanometer sized compartments. Journal of Materials Chemistry 2009, 19 (22), 3576-3590.
    87. Socrates, G. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons: 2004.
    88. Garidel, P.; Schott, H. Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. BioProcess International 2006.
    89. Huang, Y.-C.; Arham, M.; Jan, J.-S. Alkyl chain grafted poly (L-lysine): self-assembly and biomedical application as carriers. Soft Matter 2011, 7 (8), 3975-3983.
    90. Chen, B.-Y.; Huang, Y.-F.; Huang, Y.-C.; Wen, T.-C.; Jan, J.-S. Alkyl Chain-Grafted Poly (L-lysine) Vesicles with Tunable Molecular Assembly and Membrane Permeability. ACS Macro Letters 2014, 3 (3), 220-223.
    91. Hamley, I. W. Introduction to soft matter: synthetic and biological self-assembling materials. John Wiley & Sons: 2013.

    下載圖示 校內:2017-08-07公開
    校外:2017-08-07公開
    QR CODE