簡易檢索 / 詳目顯示

研究生: 鍾汶珈
Zhong, Wen-Jia
論文名稱: 改質硫化銦鋅奈米片團簇應用於壓電光觸媒產氫之研究
Modified Zinc Indium Sulfide Flower-like Nanosheets for Piezo-Photocatalytic Hydrogen Production
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 硫化銦鋅硫缺陷異質結構壓電光催化水分解產氫
外文關鍵詞: Zinc indium sulfide, Sulfur defects, Heterostructures, Piezoelectric photocatalysis
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要I 誌謝V 目錄VIII 表目錄XII 圖目錄XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 第2章 文獻回顧 4 2.1 半導體光觸媒水分解產氫 4 2.1.1 基本原理 4 2.1.2 效率改善策略 6 2.2 非中心對稱材料分類及物理性質 12 2.2.1 非中心對稱材料分類 12 2.2.2 非中心對稱材料物理性質 13 2.2.3 壓電材料於光催化增益機制及應用 15 2.3 硫化銦鋅基本性質 19 2.3.1 硫化銦鋅結晶結構 19 2.3.2 硫化銦鋅成長機制 20 2.3.3 硫化銦鋅光催化應用 22 第3章 實驗方法與步驟 27 3.1 實驗材料 27 3.1.1 製備硫化銦鋅奈米片團簇 27 3.1.2 製備改質硫化銦鋅奈米片團簇 27 3.1.3 壓電-光催化產氫實驗材料 27 3.2 實驗流程與步驟 28 3.2.1 水熱法成長原型硫化銦鋅奈米片團簇之步驟 28 3.2.2 以聯氨後處理硫化銦鋅奈米片團簇之步驟 29 3.2.3 水熱法成長聯氨後處理硫化銦鋅/富銦化合物異質結構之步驟 30 3.3 壓電-光催化產氫實驗 32 3.4 儀器分析 34 3.4.1 掃描式電子顯微鏡(Scanning electron microscope) 34 3.4.2 穿透式電子顯微鏡(Transmission electron microscope) 34 3.4.3 拉曼散射光譜儀(Raman scattering spectrometer) 35 3.4.4 X光繞射分析儀(X-ray diffractometer) 36 3.4.5 X光光電子能譜儀(X-ray photoelectron spectroscopy) 37 3.4.6 壓電力顯微鏡(Piezoresponse force microscopy) 38 3.4.7 氣相層析儀(Gas chromatography) 39 3.4.8 紫外光-可見光光譜儀(Ultraviolet/visible spectrophotometer) 39 3.4.9 電子順磁共振光譜儀(Electron paramagnetic resonance spectrometer) 40 3.4.10 螢光光譜儀(Photoluminescence)/時間解析螢光光譜儀(Time-resolved photoluminescence) 41 第4章 結果與討論 42 4.1 原型硫化銦鋅奈米片團簇觸媒特性分析 42 4.1.1 原型硫化銦鋅形貌與結構分析 42 4.1.2 原型硫化銦鋅光學及產氫效能分析 47 4.2 改質硫化銦鋅奈米片團簇壓電-光催化於水分解產氫之研究 49 4.2.1 聯氨後處理硫化銦鋅 49 4.2.1.1 聯氨後處理硫化銦鋅形貌與結構分析 49 4.2.1.2 聯氨後處理硫化銦鋅光學及產氫效能分析 54 4.2.1.3 優化之聯氨後處理硫化銦鋅微結構分析 57 4.2.2 聯氨後處理硫化銦鋅/富銦化合物異質結構 58 4.2.2.1 聯氨後處理硫化銦鋅/富銦化合物形貌與結構分析 58 4.2.2.2 聯氨後處理硫化銦鋅/富銦化合物光學及產氫效能分析 64 4.2.2.3 優化聯氨後處理硫化銦鋅/富銦化合物微結構分析 68 4.2.3 聯氨後處理硫化銦鋅/富銦化合物光致發光與時間解析光致發光分析 69 4.2.4 優化之聯氨後處理硫化銦鋅/富銦化合物化學組成分析 71 4.2.5 無犧牲試劑壓電光催化水分解分析 74 4.2.6 壓電光催化水分解產氫穩定性測試 76 4.2.7 施加不同應力於非壓電光觸媒產氫效能分析 77 4.3 優化之聯氨後處理硫化銦鋅/富銦化合物壓電效能探討 79 第5章 結論 83 第6章 參考文獻 85

    1. Grainger, A. and G. Smith, The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Current Opinion in Environmental Sustainability, 2021. 49: p. 164-189.
    2. Wang, Y., et al., Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chemical reviews, 2018. 118(10): p. 5201-5241.
    3. Mohanty, R., et al., Boosting sluggish photocatalytic hydrogen evolution through piezo-stimulated polarization: a critical review. Materials Horizons, 2022.
    4. Oh, V.B.Y., S.F. Ng, and W.J. Ong, Shining light on ZnIn2S4 photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat, 2022: p. e12204.
    5. Zhou, H., et al., Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science, 2012. 5(5): p. 6732-6743.
    6. Zhang, T., et al., Recent advances on ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformation. Journal of Materials Chemistry C, 2022.
    7. Wang, H., et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014. 43(15): p. 5234-5244.
    8. Zhang, J., et al., A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angewandte Chemie International Edition, 2012. 51(40): p. 10145-10149.
    9. Low, J., et al., Heterojunction photocatalysts. Advanced materials, 2017. 29(20): p. 1601694.
    10. Bard, A.J., Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry, 1979. 10(1): p. 59-75.
    11. Wu, S., Y. Lin, and Y.H. Hu, Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review. Journal of Materials Chemistry A, 2021. 9(5): p. 2592-2611.
    12. Maeda, K., Z-scheme water splitting using two different semiconductor photocatalysts. ACS catalysis, 2013. 3(7): p. 1486-1503.
    13. Wang, J., et al., A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. Journal of Materials Science & Technology, 2021. 78: p. 1-19.
    14. Sun, Z., et al., Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angewandte Chemie International Edition, 2018. 57(26): p. 7610-7627.
    15. Dong, B., et al., Species, engineering and characterizations of defects in TiO2-based photocatalyst. Chinese Chemical Letters, 2018. 29(5): p. 671-680.
    16. Zhang, Y.C., et al., Structure‐activity relationship of defective metal‐based photocatalysts for water splitting: experimental and theoretical perspectives. Advanced science, 2019. 6(10): p. 1900053.
    17. Varghese, J., R.W. Whatmore, and J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. Journal of Materials Chemistry C, 2013. 1(15): p. 2618-2638.
    18. Zhu, Q., et al., Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chemical Engineering Journal, 2021. 426: p. 131681.
    19. N. Soin, S.C.A., T.H. Shah, Handbook of Technical Textiles (Second Edition), in 12 - Energy harvesting and storage textiles, S.C.A. A. Richard Horrocks, Editor. 2016, Woodhead Publishing. p. 357-396.
    20. Arnau, A. and D. Soares, Fundamentals of Piezoelectricity, in Piezoelectric Transducers and Applications, A.A. Vives, Editor. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-38.
    21. White, M.A., ed. Physical Properties of Materials. 2nd Edition ed. 2011, CRC Press: Boca Raton.
    22. Li, S., et al., Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Applied Nano Materials, 2020. 3(2): p. 1063-1079.
    23. Pan, L., et al., Advances in piezo‐phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2020. 10(15): p. 2000214.
    24. Shojaeiarani, J., D. Bajwa, and G. Holt, Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 2020. 6(1): p. 41-46.
    25. Huang, X., et al., Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021. 282: p. 119586.
    26. Feng, Y., et al., Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field. Environmental science & technology, 2018. 52(14): p. 7842-7848.
    27. Romeo, N., et al., Charge storage in ZnIn2S4 single crystals. Applied Physics Letters, 1973. 22(1): p. 21-22.
    28. Koster, G.F., Space groups and their representations, in Solid state physics. 1957, Elsevier. p. 173-256.
    29. Sriram, M., et al., Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4. Journal of materials science, 1998. 33(17): p. 4333-4339.
    30. Range, K.-J., W. Becker, and A. Weiss, Notizen: Das Verhalten von CdIn2Se4 bei hohen Drucken. Zeitschrift für Naturforschung B, 1969. 24(12): p. 1654-1655.
    31. Chen, Y., et al., Controlled syntheses of cubic and hexagonal ZnIn 2 S 4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011. 40(11): p. 2607-2613.
    32. Van Doorne, W. and T. Dirkse, Supersaturated zincate solutions. Journal of The Electrochemical Society, 1975. 122(1): p. 1.
    33. Zhang, M., et al., 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution. Applied Surface Science, 2020. 526: p. 145749.
    34. Chen, Z., et al., Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. The Journal of Physical Chemistry C, 2009. 113(11): p. 4433-4440.
    35. Xu, H., et al., Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic Tetracycline hydrochloride degradation. Materials Research Bulletin, 2018. 97: p. 158-168.
    36. Chen, W., et al., Direct Z-scheme 1D/2D WO2. 72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. Journal of hazardous materials, 2020. 384: p. 121308.
    37. He, Y., et al., 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Advanced Functional Materials, 2019. 29(45): p. 1905153.
    38. Razzetti, C., P. Lottici, and L. Zanotti, Raman spectroscopy in AB2X4 pseudoternary layered compounds. Journal of Molecular Structure, 1984. 115: p. 153-156.
    39. Zallen, R. and M. Slade, Rigid-layer modes in chalcogenide crystals. Physical Review B, 1974. 9(4): p. 1627.
    40. Unger, W., et al., Raman and infrared spectra of CdIn2S4 and ZnIn2S4. Solid State Communications, 1978. 25(11): p. 913-915.
    41. Shen, S., et al., Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. Journal of Physics and Chemistry of Solids, 2012. 73(1): p. 79-83.
    42. Wang, X., et al., Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nature Communications, 2021. 12(1): p. 1-11.
    43. Wu, X., et al., Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. npj 2D Materials and Applications, 2022. 6(1): p. 1-12.
    44. Zhang, S., et al., MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS nano, 2018. 12(1): p. 751-758.
    45. Du, C., et al., Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019. 248: p. 193-201.
    46. Wu, P.-S., et al., Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. Journal of Materials Chemistry A, 2022. 10(14): p. 7728-7738.
    47. Zhong, J., et al., Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 2021. 5: p. 100079.
    48. Fontmorin, J., et al., Stability of 5, 5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water research, 2016. 99: p. 24-32.

    無法下載圖示 校內:2027-09-26公開
    校外:2027-09-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE