| 研究生: |
鍾汶珈 Zhong, Wen-Jia |
|---|---|
| 論文名稱: |
改質硫化銦鋅奈米片團簇應用於壓電光觸媒產氫之研究 Modified Zinc Indium Sulfide Flower-like Nanosheets for Piezo-Photocatalytic Hydrogen Production |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 硫化銦鋅 、硫缺陷 、異質結構 、壓電光催化 、水分解產氫 |
| 外文關鍵詞: | Zinc indium sulfide, Sulfur defects, Heterostructures, Piezoelectric photocatalysis |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Grainger, A. and G. Smith, The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Current Opinion in Environmental Sustainability, 2021. 49: p. 164-189.
2. Wang, Y., et al., Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chemical reviews, 2018. 118(10): p. 5201-5241.
3. Mohanty, R., et al., Boosting sluggish photocatalytic hydrogen evolution through piezo-stimulated polarization: a critical review. Materials Horizons, 2022.
4. Oh, V.B.Y., S.F. Ng, and W.J. Ong, Shining light on ZnIn2S4 photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat, 2022: p. e12204.
5. Zhou, H., et al., Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science, 2012. 5(5): p. 6732-6743.
6. Zhang, T., et al., Recent advances on ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformation. Journal of Materials Chemistry C, 2022.
7. Wang, H., et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014. 43(15): p. 5234-5244.
8. Zhang, J., et al., A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angewandte Chemie International Edition, 2012. 51(40): p. 10145-10149.
9. Low, J., et al., Heterojunction photocatalysts. Advanced materials, 2017. 29(20): p. 1601694.
10. Bard, A.J., Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry, 1979. 10(1): p. 59-75.
11. Wu, S., Y. Lin, and Y.H. Hu, Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review. Journal of Materials Chemistry A, 2021. 9(5): p. 2592-2611.
12. Maeda, K., Z-scheme water splitting using two different semiconductor photocatalysts. ACS catalysis, 2013. 3(7): p. 1486-1503.
13. Wang, J., et al., A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. Journal of Materials Science & Technology, 2021. 78: p. 1-19.
14. Sun, Z., et al., Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angewandte Chemie International Edition, 2018. 57(26): p. 7610-7627.
15. Dong, B., et al., Species, engineering and characterizations of defects in TiO2-based photocatalyst. Chinese Chemical Letters, 2018. 29(5): p. 671-680.
16. Zhang, Y.C., et al., Structure‐activity relationship of defective metal‐based photocatalysts for water splitting: experimental and theoretical perspectives. Advanced science, 2019. 6(10): p. 1900053.
17. Varghese, J., R.W. Whatmore, and J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. Journal of Materials Chemistry C, 2013. 1(15): p. 2618-2638.
18. Zhu, Q., et al., Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chemical Engineering Journal, 2021. 426: p. 131681.
19. N. Soin, S.C.A., T.H. Shah, Handbook of Technical Textiles (Second Edition), in 12 - Energy harvesting and storage textiles, S.C.A. A. Richard Horrocks, Editor. 2016, Woodhead Publishing. p. 357-396.
20. Arnau, A. and D. Soares, Fundamentals of Piezoelectricity, in Piezoelectric Transducers and Applications, A.A. Vives, Editor. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-38.
21. White, M.A., ed. Physical Properties of Materials. 2nd Edition ed. 2011, CRC Press: Boca Raton.
22. Li, S., et al., Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Applied Nano Materials, 2020. 3(2): p. 1063-1079.
23. Pan, L., et al., Advances in piezo‐phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2020. 10(15): p. 2000214.
24. Shojaeiarani, J., D. Bajwa, and G. Holt, Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 2020. 6(1): p. 41-46.
25. Huang, X., et al., Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021. 282: p. 119586.
26. Feng, Y., et al., Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field. Environmental science & technology, 2018. 52(14): p. 7842-7848.
27. Romeo, N., et al., Charge storage in ZnIn2S4 single crystals. Applied Physics Letters, 1973. 22(1): p. 21-22.
28. Koster, G.F., Space groups and their representations, in Solid state physics. 1957, Elsevier. p. 173-256.
29. Sriram, M., et al., Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4. Journal of materials science, 1998. 33(17): p. 4333-4339.
30. Range, K.-J., W. Becker, and A. Weiss, Notizen: Das Verhalten von CdIn2Se4 bei hohen Drucken. Zeitschrift für Naturforschung B, 1969. 24(12): p. 1654-1655.
31. Chen, Y., et al., Controlled syntheses of cubic and hexagonal ZnIn 2 S 4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011. 40(11): p. 2607-2613.
32. Van Doorne, W. and T. Dirkse, Supersaturated zincate solutions. Journal of The Electrochemical Society, 1975. 122(1): p. 1.
33. Zhang, M., et al., 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution. Applied Surface Science, 2020. 526: p. 145749.
34. Chen, Z., et al., Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. The Journal of Physical Chemistry C, 2009. 113(11): p. 4433-4440.
35. Xu, H., et al., Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic Tetracycline hydrochloride degradation. Materials Research Bulletin, 2018. 97: p. 158-168.
36. Chen, W., et al., Direct Z-scheme 1D/2D WO2. 72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. Journal of hazardous materials, 2020. 384: p. 121308.
37. He, Y., et al., 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Advanced Functional Materials, 2019. 29(45): p. 1905153.
38. Razzetti, C., P. Lottici, and L. Zanotti, Raman spectroscopy in AB2X4 pseudoternary layered compounds. Journal of Molecular Structure, 1984. 115: p. 153-156.
39. Zallen, R. and M. Slade, Rigid-layer modes in chalcogenide crystals. Physical Review B, 1974. 9(4): p. 1627.
40. Unger, W., et al., Raman and infrared spectra of CdIn2S4 and ZnIn2S4. Solid State Communications, 1978. 25(11): p. 913-915.
41. Shen, S., et al., Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. Journal of Physics and Chemistry of Solids, 2012. 73(1): p. 79-83.
42. Wang, X., et al., Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nature Communications, 2021. 12(1): p. 1-11.
43. Wu, X., et al., Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. npj 2D Materials and Applications, 2022. 6(1): p. 1-12.
44. Zhang, S., et al., MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS nano, 2018. 12(1): p. 751-758.
45. Du, C., et al., Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019. 248: p. 193-201.
46. Wu, P.-S., et al., Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. Journal of Materials Chemistry A, 2022. 10(14): p. 7728-7738.
47. Zhong, J., et al., Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 2021. 5: p. 100079.
48. Fontmorin, J., et al., Stability of 5, 5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water research, 2016. 99: p. 24-32.
校內:2027-09-26公開