簡易檢索 / 詳目顯示

研究生: 蔡恆毅
Tsai, Heng-yi
論文名稱: 利用金屬塵化反應製備之奈米碳管的儲氫性能研究
Metal dusting-assisted formation of carbon nanotubes and its hydrogen storage performance
指導教授: 蔡文達
Tsai, Wen-ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 137
中文關鍵詞: 儲氫奈米碳管金屬塵化
外文關鍵詞: carbon nanotubes, hydrogrn storage, metal dusting
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用不銹鋼於高碳勢環境中的金屬塵化機制製備奈米碳管。取經噴砂處理之304L不銹鋼,於CO/CO2=35/1之混合氣氛中進行不同溫度之塵化實驗,以探討溫度及碳勢(carbon activity)對碳沉積物結構的影響,並作為製備奈米碳管之依據。實驗結果顯示,隨著碳勢的減少,碳沉積物的形貌由實心纖維轉變為空心的多壁奈米碳管,再變成管壁更薄的單壁奈米碳管集束,在碳勢僅5時甚至無法形成管狀石墨結構,因此可發現管狀石墨結構的生成需要一臨界碳勢,小於此臨界值則無法生成。另外,試片上所有碳沉積物的量也可從SEM上觀察到隨碳勢降低而減少的趨勢。而隨著溫度的上昇,碳沉積物的原子規則排列程度也明顯提升,顯示其結晶性隨溫度的升高而提升。

    根據表面形貌觀察結果,於600 ℃下之CO/CO2混合氣氛中進行500小時塵化實驗,並收集所生成之多壁奈米碳管,以電化學方法進行儲氫量之量測與儲氫性能提升之研究。本研究以空氣氣氛熱處理、硝酸酸洗及兩種方法交替進行等方式,對奈米碳管原材進行後處理,並發現碳管表面特性會顯著影響其吸附氫原子的效能,適度提升其表面活性可提高吸附量。SEM與TEM照片顯示,空氣氣氛中熱處理有助於非晶質碳的氧化及碳管封閉端的開口,改善氣體在碳管中的流通性,提升吸附氫氣的效能,與原材相比放電量可提高約50 %。硝酸酸洗則可洗去金屬顆粒,氧化非晶質碳達到純化的效果,並可適度增加碳管表面缺陷以提高表面能,進而使放電量提高約80 %。但過度的酸洗卻會造成管狀石墨結構的破壞,破碎的碳管結構彼此團聚減少表面積與可吸附氫原子位置,降低其吸氫效能。

    經熱處理再酸洗的碳管由於表面非晶質碳已在熱處理中去除,硝酸全部用於洗去金屬顆粒以及與碳管表面產生反應,故其表面形貌照片顯示碳管結構破碎,而在TEM照片可發現內壁薄化的現象,且酸洗可去除金屬顆粒,充放電實驗結果顯示,其放電量仍略高於僅熱處理之碳管。

    經酸洗再熱處理之碳管,由於酸洗時破壞較嚴重的碳管可在熱處理過程中優先氧化,故在拉曼光譜中可發現,其結構中缺陷振動強度與石墨單晶振動強度的比例低於僅酸洗的碳管,顯示其結晶性優於酸洗4小時的碳管,在TEM中觀察到的管狀結構普遍較完整,而其放電量則是略低於僅酸洗的碳管,顯示酸洗4小時已是本實驗中最適合的後處理方式,後續的熱處理並未能使儲氫效能提升。

    In this study, carbon nano-materials were grown during the metal dusting of stainless steel in the high carbon activity atmosphere. The sand-blasted 304L stainless steels were exposed in mixed CO/CO2 atmosphere with different exposure temperatures, to investigate effects of temperature and carbon activity.

    The SEM and TEM images showed that the diameter of the carbon filament decrease with carbon activity, and there must be a critical carbon activity that the carbon filament would not form with a carbon activity under it. We can also find that the amount of carbon deposits on the substrate increase with the raise of carbon activity. In another way, carbon atoms arrangement is more regular with the raise of temperature. It means the carbon deposits get better crystallization with higher temperature. So the morphology of carbon nano materials could be explained clearly with temperature and carbon activity.

    According to former experiment results, we chose multi-walled carbon nanotubes grown at 600 ºC to investigate its hydrogen storage performance. The substrates were exposed in mixed atmosphere at 600 ºC for 500 hours, and then we collected the coke in the chamber for electrochemical hydrogen storage experiment. The surface characteristics of carbon nanotubes (CNTs) determine the interaction with hydrogen, effective surface treatments on carbon nanotubes to gain surface activity is a significant step. Two basic post-treatment are used for purification and surface modification. One is heat treatment in air and the other is nitric acid treatment with different times. At last we mixed the two ways and hoped to combine the advantages of them.

    The SEM and TEM images showed that heat treatment in oxidation atmosphere is effective to eliminate amorphous carbon and open the closed-end of tubes. These effects were also reflected with the electrochemical discharge capacity of CNTs after heat treatment which improved by 50% of as-prepared CNTs. Acid treatment can dissolve catalyst particles and eliminate amorphous carbon. And it can also form micro-pores or etch groove on the CNTs to bring in dangling bonds which make CNTs active, so the hydrogen can gather on the CNTs. The charge-discharge experiment results of the acid treatment CNTs showed the highest discharge capacity. But for longer acid treatment time, the structure of the tubes is destroyed gradually and amorphous carbon is formed, so hydrogen adsorption is lower.

    Then we combined the two post-treatments. The CNTs with heat treatment followed by acid treatment showed that the amorphous carbon was oxidized during heat treatment, so the following acid treatment would react directly with CNTs structure and cause over pickling of CNTs. But the acid treatment can dissolve metal particles, so it’s hydrogen storage performance still better than the CNTs after heat treatment.

    The heat treatment after acid treatment oxidized the amorphous carbon and low crystallization tube walls produced during acid treatment. Micro-Raman spectrum showed that the heat treatment after acid treatment really fostered crystallization. But it’s hydrogen storage performance showed that the heat treatment after 4 hours acid treatment didn’t help hydrogen adsorption on CNTs.

    摘要 I Abstract III 誌謝 VI 總目錄 VIII 表目錄 XI 圖目錄 XII 一、前言 1 二、理論基礎及文獻回顧 9 2-1奈米碳管的結構特性 9 2-2奈米碳管的成長機制 11 2-3常見的奈米碳管合成方法 13 2-3-1電弧放電法 13 2-3-2雷射剝蝕法 14 2-3-3化學氣相沈積法 14 2-4金屬塵化 15 2-4-1塵化機制 15 2-4-2塵化熱力學 18 2-4-3奈米碳管的成長 20 2-5奈米碳管的後處理 21 2-6奈米碳管儲氫量的量測 25 2-6-1常見的量測方法 25 2-6-2奈米碳管的電化學儲氫 27 2-7拉曼光譜簡介 28 三、研究方法與實驗步驟 47 3-1利用金屬塵化反應製備奈米碳材 47 3-1-1 基材準備 47 3-1-2塵化實驗之步驟及條件 47 3-2熱重分析試驗 49 3-3奈米碳管的後處理 49 3-3-1空氣氣氛熱處理 49 3-3-2硝酸酸洗 50 3-3-3酸洗與熱處理交替進行 50 3-4表面形貌觀察 51 3-5微區拉曼光譜分析 51 3-6 BET比表面積量測 52 3-7定電流充放電實驗量測儲氫量 52 3-7-1儲氫試片準備 52 3-7-2電化學三極系統 53 四、結果與討論 61 4-1奈米碳材的性質分析 61 4-1-1不同溫度下成長的奈米碳材 61 4-1-2時間的效應 68 4-2後處理對奈米碳管性質的影響 70 4-2-1空氣環境中熱處理 72 4-2-2高濃度硝酸酸洗 74 4-2-3熱處理後再酸洗 77 4-2-4酸洗後再熱處理 78 4-3 經後處理之奈米碳管的儲氫性能 79 4-3-1空氣環境中熱處理 79 4-3-2高濃度硝酸酸洗 80 4-3-3熱處理後再酸洗 81 4-3-4酸洗後再熱處理 82 五、結論 123 參考文獻 125

    1. P. G. Wiles, J. Abrahamson, “Carbon fiber layers on arc-electrodes”, Carbon, Vol. 16, p. 341, 1978.
    2. R. T. Yang, J. P. Chen, “Mechanism of Carbon Filament Growth on Metal Catalysts”, Journal of Catalysis, Vol. 115, p. 52, 1989.
    3. R. T. K. Baker, “Catalytic Growth of Carbon Filaments”, Carbon, Vol. 27, Vol. 3, p. 315, 1989.
    4. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, p. 56, 1991.
    5. A.C. Dillon, K. M. Jones, T. A. Bekkedahl, C. M. Kiang, D. S. Bethune, M. J. Heben, “Storage of Hydrogen in Single-Walled Carbon Nanotubes”, Nature, Vol. 386, p. 377, 1997.
    6. A. Zuttel, “Hydrogen Storage Methods”, Naturwissenshaften, Vol. 91, p. 157, 2004.
    7. A. Zuttel, “Materials for Hydrogen storage”, Materials today, Vol. 6, No. 9, p.24, 2003.
    8. Chao-Yi Lin, Wen-Ta Tsai, “Nano-sized carbon filament formation during metal dusting of stainless steel”, Materials Chemistry and Physics, Vol. 82, p. 929, 2003.
    9. C. M. Chun, G. Bhargava, T. A. Ramanarayanan, “Metal Dusting Corrosion of Nickel-Based Alloys”, Journal of The Electrochemical Society, Vol. 154 , No. 5, p. 231, 2007.
    10. 林朝義, “表面前處理對304L不銹鋼塵化性質影響之研究”, 博士論文, 國立成功大學材料科學及工程學系, 2003.
    11. H. Lim, H. Jung, C. Park, S. Joo, “A New Process for Removal of Catalyst in Carbon Nanotube Grown by Hot-Filament Chemical Vapor Deposition”, Japanese Journal of Applied Physics, Vol. 41, p. 4686, 2002.
    12. H. J. Huang, H. Kajiura, A. Yamada, M. Ata, “Purification and alignment of arc-synthesis single-walled carbon nanotube bundles”, Chemical Physics Letters, Vol. 356, p. 567, 2002.
    13. I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A.Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, “Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPCO) Process”, Journal of Physical Chemistry. B, Vol. 105, p. 8297, 2001.
    14. H. W. Zhu, A. Chen, Z. Q. Mao, C. L. Xu, X. Xiao, B. Q. Wei, J. Liang, D. H. Wu, “The effect of surface treatments on hydrogen storage of carbon nanotubes”, Journal of Materials Science Letters, Vol. 19, p. 1237, 2000.
    15. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C (60): Buckminsterfullerene((carbon molecule formation in space and stellar envelopes))”, Nature, Vol. 318, p. 162, 1985.
    16. B. I. Yakobson, R. E. Smalley, “Fullerene Nanotubes: C 1,000,000 and Beyond”, American Scientist, Vol. 85, p. 324, 1997.
    17. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, Vol. 363, p. 603, 1993.
    18. D. S. Bethune, C. H. Kiang, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, Vol. 363, p. 605, 1993.
    19. M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, Vol. 33, p. 883, 1995.
    20. P. J. F. Harris, “Carbon Nanotubes and Related Structures-new materials for the twenty-first century”, Cambridge: Cambridge University Press, 2000.
    21. P. M. Ajayan, T. W. Ebbesen, “Nanometre-size tubes of carbon”, Reports on Progress in Physics, Vol. 60, p. 1025, 1997.
    22. E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review”, Composites Science and Technology, Vol. 61, p. 1899, 2001.
    23. Z. Yao, H. W. C.Postama, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions”, Nature, Vol. 402, p. 273, 1998.
    24. R. T. K. Baker, P. S. Harries, “Chemistry and Physics of Carbon”, Marcel Dekker, New York, Vol. 14, p. 83, 1983.
    25. R. T. K. Barker, J. R. Alonzo, and J. A. Dumesic, “Effect of the surface state of iron on filamentous carbon formation”, Journal of Catalysis, Vol. 771, p. 74, 1982.
    26. R. T. K. Baker, J. J. Chludzinski, N. S. Dudash, “The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum” Carbon, Vol. 21, p. 463, 1983.
    27. R. T. K. Baker, M. A. Braber, P. S. Harris, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of Catalysis, Vol. 26, p. 51, 1972.
    28. T. Baird, J. R. Fryer, and B. Grant, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 ℃”, Carbon, Vol. 12, p. 591, 1972.
    29. A. Oberlin, M. Endo, and T. Koyana, “High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition”, Journal of Crystal Growth, Vol. 32, p. 335, 1976.
    30. G. G. Tibbetts, “Vapor-grown carbon fibers: Status and prospects”, Carbon, Vol. 27, p. 745, 1989.
    31. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chemical Physics Letters, Vol. 315, p.25, 1999.
    32. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, Vol. 38, p. 169, 2000.
    33. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes”, Science, Vol. 273, p. 483, 1996.
    34. http://cnst.rice.edu/pics.html
    35. C. J. Lee, J. Park, J. M. Kim, Y. Huh , J. Y. Lee , K. S. No, “Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst “, Chemical Physics Letters, Vol. 327, p. 277, 2000.
    36. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Paul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes”, Science, Vol. 280, p. 1253, 1998.
    37. S. N. Zaretskiy , Y. K. Hong , D. H. Ha , J. H. Yoon , J. Cheon , J. Y. Koo, “Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition“ , Chemical Physics Letters, Vol. 372, p. 300, 2003.
    38. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, “Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition“, Applied Physics Letters, Vol. 83, p. 135, 2003.
    39. J. C. Nava Paz, H. J. Grabke, “Metal Dusting”, Oxidation of Metals, Vol.39, Nos. 5/6, p. 437, 1993.
    40. H. J. Grabke, R. Krajak, E. M. Müller-Lorenz, “Metal Dusting of High Temperature Alloys”, Werkstoffe und Korrosion, Vol. 44, p. 89, 1993.
    41. H. J. Grabke, R. Krajak, E. M. Müller-Lorenz, S. Strauβ, “Metal Dusting of Nickel-base Alloys”, Materials and Corrosion, Vol. 47, p. 495, 1996.
    42. H. J. Grabke, H. P. Martinz, E. M. Müller-Lorenz, “Metal Dusting Resistance of High Chromium Alloys”, Materials and Corrosion, Vol. 54, No. 11, p. 860, 2003.
    43. R. F. Hochman, “Basic Studies of Metal Deterioration (“Metal Dusting”) in Carbonaceous Environments at Elevated Temperatures”, Proc. of the 4th International Congress Metal Corrosion, ed. N. E. Hammer (Houston, TX, NACE, 1972), p.258, 1972.
    44. R. F. Hochman, “Catastrophic Deterioration of High Temperature Alloys in Carbonaceous Atmospheres”, Proc. Symp. High-Temperature Alloys with Emphasis on Environmental Effects, eds. Z. A. Foroulis, F. S. Pettit (Pennington, NJ, The Electrochemical Society), p. 715, 1977.
    45. H. J. Grabke, R. Krajak, J. C. Nava Paz, “On the Mechanism of Catastrophic carburization: ‘Metal Dusting’”, Corrosion Science, Vol. 35, Nos. 5-8, p. 1141, 1993.
    46. H. J. Grabke, C. B. Bracho-Troconis, E. M. Müller-Lorenz, “Metal Dusting of Low Alloy Steels”, Werkstoffe und Korrosion, Vol. 45, p. 215, 1994.
    47. H. J. Grabke, “Metal Dusting of Low- and High-Alloy Steels”, Corrosion, Vol. 51, No. 9, p. 711, 1995.
    48. H. J. Grabke, “Mechanisms of Metal Dusting of Low and High Alloy Steels”, Solid State Phenomena, Vol. 41, p. 3, 1995.
    49. H. J. Grabke, “Thermodynamics, Mechanisms and Kinetics of Metal Dusting”, Materials and Corrosion, Vol. 49, p. 303, 1998.
    50. E. Pippel, J. Woltersdorf, H. J. Grabke, S. Strauβ, “Microprocesses of Metal Dusting on Iron”, Steel Research, Vol. 66, No. 5, p. 217, 1995.
    51. H. J. de Bruyn. E. H. Edwin, S. Brendryen, “Apparent Influence of Steam on Metal Dusting”, Paper No. 01383, March 11-16, 2001, NACE, Houston, TX, USA.
    52. P. J. Nolan, P. Banks, S. K. Lister, “The Carburisation of Fe-Cr Alloys and Steels in CO/CO2 Environments”, Pro. Conf. On Behavior of Temperature Alloys in Aggressive Environments, Petten, The Netherlands, Oct. 5-9, p. 705, 1979.
    53. H. J. Grabke, E. M. Müller-Lorenz, S. Strauss, E. Pippel, J. Woltersdorf, “Effects of Grain Size, Cold Working, and Surface Finish on Metal-Dusting Resistance of Steels”, Oxidation of Metals, Vol. 50, Nos. 3/4, p. 241, 1998.
    54. B. A. Baker, G. D. Smith, “Metal Dusting Behavior of High-temperature Alloys”, Paper No. 54, April 25-30, 1999, NACE, San Antonio, TX, USA.
    55. J. Galuszka, M. H. Back, “Iron Surface Morphology Factor in the Growth of Filamentous Carbon”, Carbon, Vol. 22, No. 2, p. 141, 1984.
    56. R. T. Yang, J. P. Chen, “Mechanism of Carbon Filament Growth on Metal Catalysts”, Journal of Catalysis, Vol. 115, p. 52, 1989.
    57. C. M. Chun, T. A. Ramanarayanan, J. D. Mumford, “Relationship between Coking and Metal Dusting”, Materials and Corrosion, Vol. 50, p. 6349, 1999.
    58. B. Schmid, Ø. Grong, R. Ødegård, “Coke Formation in Metal Dusting Experiments”, Materials and Corrosion, Vol. 50, p. 647, 1999.
    59. J. Zhang, A. Schneider, G. Inden, “Effect of gas composition on cementite decomposition and coke formation on iron”, Corrosion Science, Vol. 45, p. 281, 2003.
    60. J. Zhang, A. Schneider, G. Inden, “Characterisation of the coke formed during metal dusting of iron in CO–H2–H2O gas mixtures”, Corrosion Science, Vol. 45, p. 1329, 2003.
    61. V. Z. Mordkovich, D. N. Kharitonov, I. A. Maslov, A. A. Kamenev, “Ni–Fe Competition in the Catalysis of Carbon Nanotube Growth”, Fullerenes, Nanotubes, and Carbon Nanostructures, Vol. 14, p. 20, 2006.
    62. K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, Vol. 282, p. 429, 1998.
    63. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R.E. Smalley, P. C. Eklund, “Purification of single-wall carbon nanotubes by microfiltration”, Journal of Physical Chemistry. B, Vol. 101, p. 8839, 1997.
    64. E. Farkas, M. E. Anderson, Z. Chen, A. G. Rinzler, “Length sorting cut single wall carbon nanotubes by high performance liquid chromatography”, Chemical Physics Letters, Vol. 363, p. 111, 2002.
    65. G. S. Duesberg, W. Blau, H. J. Byrne, J. Muster, M. Burghard, S. Roth, “Chromatography of carbon nanotubes”, Synthetic Metals, Vol. 103, p. 2484, 1999.
    66. P. X. Hou, S. Bai, Q. H. Yang, C. Liu, H. M. Cheng, “Multi-step purification of carbon nanotubes”, Carbon, Vol. 40, p. 81, 2002.
    67. A. Kocsonya, Z. Konya, X.B. Zhang, G. van Tendeloo, A. Fonseca, J. B. Nagy, “Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD”, Materials science & engineering C., Vol. 19, p. 9, 2002.
    68. J. F. Colomer, P. Piedigrosso, A. Fonseca, J. B. Nagy, “Different purification methods of carbon nanotubes produced by catalytic synthesis”, Synthetic Metals, Vol. 103, p. 2482, 1999.
    69. Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, “High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing”, Carbon, Vol. 39, p. 655, 2001.
    70. S. R. C. Vivekchand, A. Govindaraj, M. M. Seikh, C. N. R. Rao, “New Method of Purification of Carbon Nanotubes Based on Hydrogen Treatment”, Journal of Physical Chemistry. B, Vol. 108, p. 6935, 2004.
    71. N. E. Tran, S. G. Lambrakos, “Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique”, Nanotechnology, Vol. 16, p. 639, 2005.
    72. H. Hu, B. Zhao, M. E. Itkis, R. C. Haddon, “Nitric Acid Purification of Single-Walled Carbon Nanotubes,” Journal of Physical Chemistry. B, Vol. 107, p. 13838, 2003.
    73. 石立節, “奈米碳管酸純化前後表面特性之變化”, 碩士論文, 國立中央大學環境工程所, 2005.
    74. Y. Li, X. B. Zhang, J. H. Luo, W. Z. Huang, J. P. Cheng, Z. Luo, T. Li, F. Liu, G. Xu, X. Ke, L. Li, H. J. Geise, “Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments”, Nanotechnology, Vol. 15, p. 1645, 2004.
    75. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jinj, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotubefield-emission display”, Applied Physics Letters, Vol. 75, p. 3129, 1999.
    76. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, “Covalently functionalized nanotubes as nanometresized probes in chemistry and biology”, Nature, Vol. 394, p. 52, 1998.
    77. H. W. Zhu, A. Chen, Z. Q. Mao, C. L. Xu, X. Xiao, B. Q. Wei, J. Liang, D. H. Wu, “The effect of surface treatments on hydrogen storage of carbon nanotubes”, Journal of Materials Science Letters, Vol. 19, p. 1237, 2000.
    78. F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang , C. Chen, “Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior”, Carbon, vol. 41, p. 2527, 2003.
    79. A. Zuttel, P. Sudan, P. Mauron, P. Wenger, “Model for the hydrogen adsorption on carbon nanostructures”, Applied Physics A, Vol. 78, p. 941, 2004.
    80. H. Takagi, H. Hatori , Y. Soneda , N. Yoshizawa , Y. Yamada, “Adsorptive hydrogen storage in carbon and porous materials”, Materials Science and Engineering B, Vol. 108, p. 143, 2004.
    81. B. K. Gupta, R. S. Tiwari, O. N. Srivastava, “Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene”, Journal of Alloys and Compounds, Vol. 381, p. 301, 2004.
    82. R. Checchetto, G. Trettel, A. Miotello, “Sievert-type apparatus for the study of hydrogen storage in solids”, Measurement Science and Technology, Vol. 15, p. 127, 2004.
    83. P. Chen, X. Wu, J. Lin, K. L. Tan, “High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures”, Science, Vol. 285, p. 91, 1999.
    84. Y. Chen, D. T. Shaw, C. Lund, W. M. Lu, D. D. L. Chung, “Hydrogen storage in aligned carbon nanotubes”, Applied Physics Letters, Vol. 78, p. 2128, 2001.
    85. S. M. Lee, K. S. Park, Y. C. Choi, “Hydrogen adsorption and storage in carbon nanotubes”, Journal of the American Chemical Society, Vol. 113, p. 209, 2000.
    86. C. Nützenadel, A. Züttel, D. Chartouni, Louis Schlapbach, “Electrochemical Storage of Hydrogen in Nanotube Materials”, Electrochemical and Solid-State Letters, Vol. 2 (1), p. 30, 1999.
    87. X. Qin, X. P. Gao, H. Liu, H. T. Yuan, D. Y. Yan, W. L. Gong, D. Y. Song, “Electrochemical Hydrogen Storage of Multiwalled Carbon Nanotubes”, Electrochemical and Solid-State Letters, Vol. 3 (12) , p. 532, 2000.
    88. N. Rajalakshmi, K. S. Dhathathreyan, A. Govindaraj, B. C. Satishkumar, “Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage”, Electrochimica Acta, Vol. 45, p. 4511, 2000.
    89. G. P. Dai, M. Liu, D. M. Chen, P. X. Hou, Y. Tong, and H. M. Cheng, “Electrochemical Charge-Discharge Capacity of Purified Single-Walled Carbon Nanotubes”, Electrochemical and Solid-State Letters, Vol. 5, p. 13, 2002.
    90. G. P. Dai, C. Liu, M. Liu, M. Z. Wang, H. M. Cheng, “Electrochemical Hydrogen Storage Behavior of Ropes of Aligned Single-Walled Carbon Nanotubes”, NANOLETTERS, Vol. 2, No. 5, p. 503, 2002.
    91. S. Yi, H. Zhang, L. Pei, S. Hu, L. Hu,, “The study of the electrochemical properties of CNTs–LaNi5 electrodes”, Materials Science and Engineering B, Vol. 128, p. 125, 2006.
    92. F. Tuinstra, J. L. Koenig., “Raman Spectrum of Graphite”, The Journal of Chemical Physics, Vol. 53, p. 1126, 1970.
    93. P. Lespade, R Al-Jishi, M. S. Dresselhaus, “Model for Raman scattering from incompletely graphitized carbons”, Carbon, Vol. 20, p. 427, 1982.
    94. N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, P. M. Ajayan1, “Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes, PHYSICAL REVIEW B, Vol. 66, 235424, 2002.
    95. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J. C. Charlier, “Root-Growth Mechanism for Single-Wall Carbon Nanotubes”, PHYSICAL REVIEW LETTERS, Vol. 87, No. 27, 275504, 2001.
    96. J. Kong, A. M. Cassell, H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes”, Chemical Physics Letters, Vol. 292, p. 567, 1998.
    97. H. M. Cheng, F. Li, G. Su, X. Sun, L. L. He, H. Y. Pen, X. Sun, M. S. Dresselhaus, “Large scale and low-cost synthesis of single walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons”, Applied Physics Letters, Vol. 72, No. 25, p. 3282, 1998.
    98. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, M. S. Dresselhaus, “Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons” Chemical Physics Letters, Vol. 289, p. 602, 1998.
    99. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide”, Chemical Physics Letters, Vol. 313, p.91, 1999.
    100. Y. T. Jang, J. H. Ahn, Y. H. Lee, B. K. Ju, “Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition”, Chemical Physics Letters, Vol. 372, p. 745, 2003.
    101. M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, J. W. Park, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond and Related Materials, Vol. 10, p.1235, 2001.
    102. H. Zhang, X. Fu, Y. Chen, S. Yi, S. Li, Y. Zhu, L. Wang, “The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst”, Physica B, Vol. 352, p. 66, 2004.
    103. S. C. Tsang, P. J. F. Harris, M. L. H. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature, Vol. 362, p. 520, 1993.
    104. I. Lombardi, M. Bestetti, C. Mazzocchia, P. L. Cavallotti, U. Ducati, “Electrochemical Characterization of Carbon Nanotubes for Hydrogen Storage”, Electrochemical and Solid-State Letters, Vol. 7 (5), p. 115, 2004.

    下載圖示 校內:立即公開
    校外:2007-07-05公開
    QR CODE