簡易檢索 / 詳目顯示

研究生: 陳宏瑋
Chen, Hung-Wei
論文名稱: 薄膜生物反應器系統處理光電廢水硝化效能與氨氧化微生物族群之評估
Evaluation of Nitrification Performance and Microbial Ecology of Ammonia-Oxidizing Bacteria in membrane bioreactor (MBR) system treating TFT-LCD Wastewater
指導教授: 黃良銘
Whang, Lang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 112
中文關鍵詞: TFT-LCD廢水MBR氨氧化菌群膠體性COD
外文關鍵詞: TFT-LCD wastewater, MBR, ammonia-oxidizing bacteria (AOB), colloid COD
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,台灣光電半導體業等嶄新的高科技產業發展蓬勃,其中薄膜液晶螢幕(Thin Film Transistor Liquid Crystal Display, TFT-LCD)由於可應用在許多相關科技上而使需求與日俱增。但隨著需求與產量逐漸增加,光電產業的廢水量也逐日劇增。光電產業廢水中主要包括製程中使用大量的高濃度且高強度的含氮、硫有機化學溶劑。目前國內的光電產業多以傳統好氧生物處理此類廢水,或以缺氧-好氧生物處理(Anoxic-Oxic, AO process)以降低此類廢水對微生物的負荷與影響,但由於光電產業廢水的成分及廢水量,容易受到當季產能的影響,廢水量以及組成往往瞬息萬變。加上現今國內水資源逐漸短缺,工業內水資源回收的問題漸漸受到重視,同時若此大量含氮廢水若未經適當處理排入水體,將會對環境造成難以抹滅的衝擊。有鑑於此,眾多工業開始發展統一處理產業中含氮廢水與後續回收的技術發展。而在光電產業內也開始利用廠內的生物廢水系統處理多股廠內不同來源之廢水,但實廠生物處理流程操作參數(如流量等)的不穩定性卻間接影響其處理效能,如何增加生物處理系統對於氮系汙染物處理效能的穩定性,是未來光電產業重要課題之一。
    由於MBR單元操作有其複雜性,再者光電廠內製程廢水其組成相當多元,使得結合MBR的生物系統其操作條件更加複雜,且基於保密條約協定下,實廠無法提供詳細MBR操作參數與資料。故本研究將主要針對實廠(F廠)結合MBR處理系統的光電廢水生物處理流程的變更過程,配合傳統水質分析以及操作參數監控,評估結合MBR系統的傳統生物處理系統是否提升整體硝化效能,並配合分子生物檢測技術可提供快速、確切的微生物族群生態結構與消長,在生物處理流程中更能完整的解釋並掌控處理效能。
    光電廠(F廠)之生物處理系統,主要為結合薄膜生物反應槽(membrane bioreactor, MBR)之處理系統,於不同的處理流程與操作參數下,以傳統水質監測技術評估其處理有機物及氮汙染物的效能,並配合分子生物技術(主要為Terminal-Restriction Fragment Length Polymorphism, T-RFLP)探討在改變處理程序的過程中優勢氨氧化菌群(Ammonia-Oxidized Bacteria)於系統中的消長情況。以更有效地掌控光電產業廢水生物處理系統的效能。評估結合MBR系統的傳統生物處理系統是否提升硝化效能。
    光電廠(F廠)操作A/O MBR系統時期硝化效能不佳,經由改變為A/O/A/O MBR操作後硝化效能明顯提升,而在嘗試改變為O/A/O MBR操作後,硝化效能也穩定呈現。根據分子技術檢測及水質分析,發現F廠存在豐富好氧氨氧化菌(主要為Nitrosomonas oligotropha, Nitrosomonas europaea,Nitrosomonas communis以及 Nitrosomonas marina )。在F廠生物處理系統操作的310天內,進行長期水質分析與評估氨氧化菌硝化表現的同時,建立一實驗室規模的好氧反應槽模擬實廠內好氧槽的狀況,發現實廠生物系統中可能存在膠體性COD問題。而在F廠在改變處理系統後,不僅改善系統內膠體性COD問題,並且硝化效能明顯提升,同時生物系統內持續存在主要優勢氨氧化菌Nitrosomonas oligotropha以及Nitrosomonas communis。在觀察F廠硝化效能狀況後,推測膠體性COD在MBR系統內為影響硝化效能的主要因子。
    本研究除了對實廠進行長期水質分析及微生物族群監測以外,同時也利用實驗室規模的好氧反應槽模擬實廠內好氧槽的狀況,輔以好氧活性汙泥硝化活性批次試驗以比對現場水質資料,嘗試在研究期間配合水質分析與分子生物技術找出實廠硝化效能之主因,期許提升實廠整體去除總氮效能。

    Along with the TFT-LCD and semiconductor industries development growing rapidly, the requirement of Thin Film Transistor Liquid Crystal Display (TFT-LCD) substantially increases due to TFT-LCD monitor could combine many technology, and the amount of pollutants produced during manufacturing processes also increases. TFT-LCD wastewater contains high-strength organic nitrogen from the use of organic solvent:mono-ethanolamine(MEA, C2H5ONH2), and tetra-methyl ammonium hydroxide(TMAH, (CH3)4NOH) and dimethyl sulphoxide(DMSO, (CH3)2SO). In Taiwan A/O biological treatment is widely used to settle organic wastewater problem. Nowadays because the organic wastewater quality changes exceptionally and the improvement of water reuse, many industries begin to develop wastewater treatment to all wastewater on-site, and follow-up water reuse. How to increase the stability of biological wastewater treatment is important issue in the future. In this research, the nitrification efficiency in the changes of biological process in F site will be evaluated. Company with long-term water quality analysis, hydraulic operation factor monitor and molecular methods, entire information will explain the nitrification performance in F site.
    By the performing molecular methods targeting on functional gene amoA of AOB such as Polymerase Chain Reaction(PCR), and Terminal Restriction Fragment Length Polymorphism(T-RFLP) to identify the shift in microbial communities, and water quality analysis could be rapidly connect with the evaluation of nitrification to apply the efficiency control of on-site. In this research, T-RFLP results show that during the changes of biological process in F site, two communities of Nitrosomonas oligotropha and Nitrosomonas communis seems be the important species on F site nitrification performance. With the processes changes in F site, the problem of colloid COD could improve than before.
    In this research, also use laboratory-scale experiment like batch test and operation of bio-reactor to simulate the situation of aerobic tank on-site, to test the activities of aerobic sludge and compare with on-site water quality. The target of this research is attempted to figure out the factors influencing nitrification in MBR system.
    More researchs is developing in order to promote the efficiency of total nitrogen removal in TFT-LCD wastewater treatment plants.

    摘要.......................................3 Abstract.......................................5 誌謝............................................7 目錄.....................................................9 圖目錄...........................................12 表目錄...........................................15 第一章 前言..............................16 第二章 文獻回顧................................18 2.1 TFT-LCD產業與製程廢水概述...................18 2.2 TFT-LCD製程與廢水組成特性..........................18 2.3 TFT-LCD製程有機廢水主成分與生物分解特性................25 2.3.1二甲基亞楓 (Dimethyl sulphoxide, DMSO)特性........25 2.3.2乙醇胺 (Monoethanolamine, MEA)特性...............26 2.3.3氫氧化四甲基胺 (Tetra-methyl ammonium hydroxide, TMAH)特性..27 2.4 TFT-LCD製程有機廢水處理.........................30 2.4.1自然界氮化合物之影響循環與對環境之影響.........31 2.4.2 生物除氮機制...............................33 2.4.3硝化作用...............................33 2.4.4 硝化活性影響因子................................34 2.4.5硝化菌之多樣性..........................35 2.4.6活性汙泥中硝化菌生態結構.........................39 2.5分子生物技術應用於氨氧化菌生態結構之研究...............41 2.5.1聚合酶連鎖反應(Polymerase Chain Reaction, PCR) ...41 2.5.2末端限制酶片段長度多型性分析(Terminal Restriction Fragment Length Polymorphism, T-RFLP) ............44 2.6 Membrane Bioreactor (MBR)之應用...............49 第三章 實驗材料與方法............................51 3.1 TFT-LCD實廠廢水處理流程概述.....................51 3.2實廠生物處理系統......................................51 3.2.1 F廠生物處理系統...........................52 3.3水質分析與使用儀器.......................54 3.3.1 一般水質分析..................................54 3.3.2 特殊成分分析..................................56 3.3.3 批次式實驗設計.....................................59 3.3.4 生物反應器實驗設計....................61 3.4分子生物檢測技術....................................63 3.4.1總DNA萃取....................................63 3.4.2 PCR聚合酶連鎖反應(Polymerase Chain Reaction) ....64 3.4.3 T-RFLP尾端修飾限制片段長度多樣性............66 第四章 結果與討論......................................69 4.1 F實廠A/O MBR系統...........................70 4.1.1 F廠 A/O MBR初期汙泥活性測試.....................71 4.1.2 F廠 A/O MBR時期之操作參數與硝化效能評估..........73 4.2 F實廠 A/O/A/O MBR系統.....................77 4.2.1 F廠 A/O/A/O MBR初期汙泥活性測試...............78 4.2.2 F廠 A/O/A/O MBR時期之操作參數與硝化效能評估.......80 4.2.3 模擬F廠生物反應槽操作變化......................84 4.3 F實廠O/A/O MBR系統......................87 4.3.1 F實廠O/A/O MBR時期之操作參數與硝化效能評估............88 4.4 F廠好氧槽與模擬F廠之反應槽中膠體性COD變化..........92 4.4.1 F廠好氧槽內膠體性COD變化...............92 4.4.2 模擬F廠之反應槽內膠體性COD變化.....................94 4.5 F廠系統脫硝活性測試.............................96 4.6 F廠不同操作流程中好氧槽內有機氮濃度比較.............100 4.7 F廠氨氧化微生物族群結構與變化....................103 第五章 結論與建議...................................106 5.1 結論............................................106 5.2 建議......................................107 第六章 參考文獻.......................................108

    A. Teske, Alm E., Regan J. M., Toze S., Rittmann B. E., Stahl D. A.(1994), Evolutionary relationship among ammonia- and nitrite-ozidizing bacteria, Journal of bacteriology 176(21), pp. 6623-6630.
    Baeza J.A., D. Gabriel, J. Lafuente (2004), Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP), Process Biochemistry 39, pp. 1615–1624.
    Azbar Nuri, Richard E. Speece (2001), TWO-PHASE, TWO-STAGE, AND SINGLE-STAGE ANAEROBIC PROCESS COMPARISON, Journal of Environmental Engineering, pp. 240-248.
    Fu Zhimin, Fenglin Yang, Yingyu An, Yuan Xue (2009), Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR) , Biochemical Engineering Journal 43, pp.191-196.
    Guo Jianhua, Qing Yang, Yongzhen Peng, Anming Yang, Shuying Wang (2007), Biological nitrogen removal with real-time control using step-feed SBR technology, Enzyme and Microbial Technology 40, pp. 1564-1569.
    Jang Namjung, Xianghao Ren, Geontae Kim, Changhyo Ahn, Jaeweon Cho, In S. Kim (2007), Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse, Desalination 202, pp. 90–98.
    Liu Hongbo, Changzhu Yang , Wenhong Pu, Jingdong Zhang (2008), Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/ aerobic/membrane bioreactor, Chemical Engineering Journal 140, pp.122–129.
    Marrot B., A. Barrios-Martinez, P. Moulin, and N. Roche (2004), Industrial Wastewater Treatment in a Membrane Bioreactor: A Review, Environmental Progress 23 (1), pp. 59-68.
    Miura Yuki, Mirian Noriko Hiraiwa, Tsukasa Ito, Takanori Itonaga, Yoshimasa Watanabe, Satoshi Okabe (2007), Bacterial community structures in MBRs treating municipal wastewater: Relationship between community stability and reactor performance, Water Reasearch 41, pp. 627-637.
    Naghizadeh A., A. H. Mahvi, A. R. Mesdaghinia, M. Alimohammadi (2011), Application of MBR Technology in Municipal Wastewater Treatment, Research Article‧Chemistry 36, pp 3-10.
    Peng Yongzhen, Guibing Zhu (2006), Biological nitrogen removal with nitrification and denitrification via nitrite pathway, Appl Microbiol Biotechnol 73, pp.15-26.
    Park Se-Jin, Tai-Il Yoon, Jae-Ho Bae, Hyung-Joon Seo, Hyo-Jung Park(2001), Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry, Process Biochemistry 36, pp. 579–589.
    Park Hee-Deung, John M. Regan and Daniel R. Noguera (2002), Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal process, Water Science Technology 46(1-2), pp. 273-280.
    Park Hee-Deung, Daniel R. Noguera (2004), Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge, Water Research 38, pp. 3275–3286.
    Robertsa Je A., Paul M. Suttonb, Prakash N. Mishraa (2000), Application of the membrane biological reactor system for combined sanitary and industrial wastewater treatment, International Biodeterioration & Biodegradation 46, pp. 37-42.
    Rotthauwe Jan-Henrich, Karl-Paul Witzel, Werner Liesack (1997), The Ammonia Monooxygenase Structural Gene amoA as a Functional Marker: Molecular Fine-Scale Analysis of Natural Ammonia-Oxidizing Populations, Applied and environmental microbiology 63(12), pp. 4704-4712.
    Shen Jinyou, Rui He, Weiqing Han, Xiuyun Sun, Jiansheng Li, LianjunWang (2009), Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR), Journal of Hazardous Materials 172, pp.595–600.
    Sofia A., W.-T. Liu, S.L. Ong, W.J. Ng (2004), In-situ characterization of microbial community in an A/O submerged membrane bioreactor with nitrogen removal, Water Science and Technology 50(8), pp.41–48.
    Shammas Nazih Kh. (1986), Interactions of Temperature, pH, and Biomass on the Nitrification Process, Water Environment Federation 58(1), pp. 52-59.
    Tan Teck Wee, How Yong Ng (2008), Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors, Water Research 42 pp.1122 – 1132.
    Tardieua E., A. Grasmickb, V. Geaugeyc, J. Manemd (1998), Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment, Journal of Membrane Science 147, pp.1-12.
    Tan Nico C.G., Marlies J. Kampschreurb, Wouter Wandersa, Mike S.M. Jettena Willem L.J. van der Pola, Jack van de Vossenberga, Robbert Kleerebezemb, Mark C.M. van Loosdrechtb (2008), Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations, Systematic and Applied Microbiology 31, pp. 114-125.
    Wanger M., Rath G., Amann R., Koops H.-P, Schleifer K.-H, In situ identification of ammonia-oxidizing bacteria, Systematic and Applied Microbiology, 18(2), pp. 251-256.
    Wagner Michael, Gabriele Rath, Hans-Peter Koops, Janine Flood, Rudolf Amann (1996), In situ analysis of nitrifying bacteria in sewage treatment plants, Water Science and Technology 34(1), pp. 237-244.
    Wang Jingfeng, Xuan Wang, Zuguo Zhao, Junwen Li (2008), Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor, Appl Microbiol Biotechnol 79, pp. 679-685.
    Wells George F., Hee-Deung Park, Chok-Hong Yeung, Christopher A. Francis, Craig S. Criddle Brad, Eggleston (2009) Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea, Environmental Microbiology 11(9), pp. 2310-2328.
    Zhidong L. (2010), Integrated Submerged Membrane Bioreactor
    Anaerobic/Aerobic (ISMBR-A/O) for Nitrogen and Phosphorus Removal During Oil Refinery Wastewater Treatment, Petroleum Science and Technology 28 pp.286–293.
    Zhidong L., Z. Yong, X. Xincheng, Z. Lige, Q. Dandan (2009), Study on Anaerobic/Aerobic Membrane Bioreactor Treatment for Domestic Wastewater, Environmental Studies 18(5), pp. 957-963.
    Çiçek Nazim, Juan P. Franco, Makram T. Suidan, Vincent Urbain, Jacques Manem (2010), Characterization and Comparison of a Membrane Bioreactor and a Conventional Activated-Sludge System in the Treatment of Wastewater Containing High-Molecular-WeightCompounds, Water Environment Research 71(1), pp. 64-70.
    康美祝(2002), MBR除氮系統特性之研究, 國立中央大學環境工程學系碩士論文。
    林宏霖(2006), 探討生物分解光電產業製程廢水之反應動力特性研究,國立成功大學環境工程學系碩士論文。
    黃淑君(2006), 不織布薄膜反應槽好氧生物分解TFT-LCD製程有機廢水程序 功能及生態變化之研究,國立成功大學環境工程學系碩士論文。
    袁熙龍(2006), 都市與畜牧廢水生物處理系統硝化菌生態與硝化效能相關性之研究, 國立成功大學環境工程學系碩士論文。
    李展能(2007), TFT-LCD有機廢水在好氧、缺氧及厭氧環境下分解機制之研究,國立成功大學環境工程學系碩士論文。
    姜婷毓(2009), 無機碳對氨氧化菌族群及其硝化反應表現之影響探討, 國立成功大學環境工程學系碩士論文。
    林立彬(2010), 厭氧汙泥分解TFT-LCD及EDTA製程廢水成分之研究, 崑山科技大學環境工程系碩士論文。
    陳柏均(2010), 光電產業TFT-LCD製程有機廢水生物降解機制及微生物生態變化之探討, 國立成功大學環境工程學系碩士論文。
    李雅菁(2010), 針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究, 國立成功大學環境工程學系碩士論文。
    鄭幸雄(2005), 運用分子生物技術提升厭氧好氧薄膜濾離生物反應器之生物分解功能, 環保育成中心環保科技計劃期末報告 EPA-93-U1U4-006。
    杜建德(2005), TFT-LCD環保運作概述
    工研院(2005), 高科技產業環保工程實務技術, 環安中心光電及半導體業廢水 及回收新技術研究會。
    黃良銘(2006), 分子生物技術應用於薄膜液晶螢幕有機廢水生物分解程序優勢降解菌生態及穩定操作程序最佳化研究。

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE