簡易檢索 / 詳目顯示

研究生: 李奕旻
Lee, Yi-Min
論文名稱: 週期結構之電阻快速萃取方法
The Fast Resistance Extraction for Periodic Patterns
指導教授: 舒宇宸
Shu, Yu-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 40
中文關鍵詞: 集成電路設計寄生參數萃取電阻電容電感漸進理論
外文關鍵詞: IC Design, Parasitic Extraction, RLC, Asymptotic Homogenization
相關次數: 點閱:116下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的集成電路設計(Integrated Circuit Design) 中,電阻、電容以及電感被用於檢查電路運作效能。故為了方便電路設計,如何快速且精準地萃取這些參數是一
    個重要議題。在這篇論文中,我們針對週期性結構電路中的子電路進行電阻研究。
    首先,我們利用子電路中的洞數去分類所有可能發生的子電路;另一方面,我們研
    究週期結構的電阻與子電路數量關連性。結果發現電阻與子電路數量呈現一個線性
    關係。利用這個關係,我們可以建立起一組線性方程來外插進而得到逼近解,而我
    們進行了些數值驗證,這個外插方法的相對誤差低於0.1% 且記算時間被大幅地縮
    減。

    The extraction problems for resistance, inductance and capacitance are big issues for
    integrated-circuit (IC) design. These parameters are used in circuit simulation to check
    the circuit’s functionality. Therefore, it is essential to obtain these parameters quickly
    in IC design. In this thesis, we study the resistance extraction problem with periodic
    patterns and investigate the resistance from the cell problem. First, we categorize
    the cell problems by the number of holes which is also the macroscopic density in a
    square/rectangle chip. Second, we study the cell problem and increase the problem
    size rapidly for the cell problem to emulate the periodic patterns. We find that the
    resistance approaches the resistance with periodic patterns linearly as the number of
    cells increases. It enlightens us to create an extrapolation for the answer properly.
    The numerical results show the relative error for the estimation is less than 0.1% and
    the computation time is greatly decreased for the resistance extraction problem with
    periodic patterns.

    1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 IC Design and Parasitic Extraction . . . . . . . . . . . . . . . . . . . . 2 1.3 Aims of This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 The Resistance Extraction Problem 7 2.1 Ohm’s and Kirchhoff’s Current Laws . . . . . . . . . . . . . . . . . . . 7 2.1.1 Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Kirchhoff’s Current Law . . . . . . . . . . . . . . . . . . . . . . 8 2.2 The Resistance Extraction Problem . . . . . . . . . . . . . . . . . . . . 9 3 The Periodic Pattern Problem for Square Chips 11 3.1 The Resistance of Square Chips . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The Resistance of Periodic Patterns . . . . . . . . . . . . . . . . . . . . 16 3.2.1 The Relation between Resistance and Problem Size . . . . . . . 16 3.2.2 The Approximate Method for Resistance of Square Periodic Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.3 Some Numerical Tests for Resistance of Periodic Pattern . . . . 20 4 Conclusion 24 A The Pattern of Outlier cases 25 A.1 The 5×5 Pattern Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 A.2 The 7×7 Pattern Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 B The Resistance Tables of Periodic Patterns 36 V Reference 39

    [1] K. Stüben, “A Review of Algebraic Multigrid,” J. Comput. Appl. Math., vol. 128,
    pp. 281–309, Mar. 2001.
    [2] J. W. Ruge and K. Stüben, “Algebraic Multigrid (amg),” Multigrid Methods, vol.
    3 of Frontiers in Applied Mathematics.
    [3] D. Cioranescu and P. Donato, An Introduction to Homogenization (Oxford Lecture
    Series in Mathematics and Its Applications). Oxford University Press, 0 ed., 2
    2000.
    [4] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic
    Structures (Chelsea Publications). American Mathematical Society, 10 2011.
    [5] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists
    and Engineers: Asymptotic Methods and Perturbation Theory (v. 1). Springer,
    1999 ed., 12 1999.
    [6] N. A. Sherwani, Algorithms for VLSI Physical Design Automation. Springer,
    3rd ed., 11 1998.
    [7] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected
    Topics. Holden-Day, 1st ed., 1977.
    39
    [8] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge
    University Press, 0 ed., 10 1998.
    [9] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits (2nd
    Edition). Prentice Hall, 2 ed., 1 2003.
    [10] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial: Second
    Edition. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
    2000.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE