| 研究生: |
李奕旻 Lee, Yi-Min |
|---|---|
| 論文名稱: |
週期結構之電阻快速萃取方法 The Fast Resistance Extraction for Periodic Patterns |
| 指導教授: |
舒宇宸
Shu, Yu-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 集成電路設計 、寄生參數萃取 、電阻 、電容 、電感 、漸進理論 |
| 外文關鍵詞: | IC Design, Parasitic Extraction, RLC, Asymptotic Homogenization |
| 相關次數: | 點閱:116 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的集成電路設計(Integrated Circuit Design) 中,電阻、電容以及電感被用於檢查電路運作效能。故為了方便電路設計,如何快速且精準地萃取這些參數是一
個重要議題。在這篇論文中,我們針對週期性結構電路中的子電路進行電阻研究。
首先,我們利用子電路中的洞數去分類所有可能發生的子電路;另一方面,我們研
究週期結構的電阻與子電路數量關連性。結果發現電阻與子電路數量呈現一個線性
關係。利用這個關係,我們可以建立起一組線性方程來外插進而得到逼近解,而我
們進行了些數值驗證,這個外插方法的相對誤差低於0.1% 且記算時間被大幅地縮
減。
The extraction problems for resistance, inductance and capacitance are big issues for
integrated-circuit (IC) design. These parameters are used in circuit simulation to check
the circuit’s functionality. Therefore, it is essential to obtain these parameters quickly
in IC design. In this thesis, we study the resistance extraction problem with periodic
patterns and investigate the resistance from the cell problem. First, we categorize
the cell problems by the number of holes which is also the macroscopic density in a
square/rectangle chip. Second, we study the cell problem and increase the problem
size rapidly for the cell problem to emulate the periodic patterns. We find that the
resistance approaches the resistance with periodic patterns linearly as the number of
cells increases. It enlightens us to create an extrapolation for the answer properly.
The numerical results show the relative error for the estimation is less than 0.1% and
the computation time is greatly decreased for the resistance extraction problem with
periodic patterns.
[1] K. Stüben, “A Review of Algebraic Multigrid,” J. Comput. Appl. Math., vol. 128,
pp. 281–309, Mar. 2001.
[2] J. W. Ruge and K. Stüben, “Algebraic Multigrid (amg),” Multigrid Methods, vol.
3 of Frontiers in Applied Mathematics.
[3] D. Cioranescu and P. Donato, An Introduction to Homogenization (Oxford Lecture
Series in Mathematics and Its Applications). Oxford University Press, 0 ed., 2
2000.
[4] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic
Structures (Chelsea Publications). American Mathematical Society, 10 2011.
[5] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists
and Engineers: Asymptotic Methods and Perturbation Theory (v. 1). Springer,
1999 ed., 12 1999.
[6] N. A. Sherwani, Algorithms for VLSI Physical Design Automation. Springer,
3rd ed., 11 1998.
[7] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected
Topics. Holden-Day, 1st ed., 1977.
39
[8] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge
University Press, 0 ed., 10 1998.
[9] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits (2nd
Edition). Prentice Hall, 2 ed., 1 2003.
[10] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial: Second
Edition. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2000.