研究生: |
鄭志聖 Cheng, Chi-Sheng |
---|---|
論文名稱: |
以光調制光譜及光激發螢光光譜研究砷銻化鎵及氮化銦的光電特性 The electro-optic Properties of GaAsSb and InN Studied by Photoreflectance and Photoluminescence |
指導教授: |
黃正雄
Hwang, Jenn-Shyong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 氮化銦 、砷銻化鎵 、光激發光譜 、光調制光譜 |
外文關鍵詞: | GaAsSb, InN, Photoluminescence, Photoreflectance |
相關次數: | 點閱:89 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用室溫下的光調制光譜研究砷銻化鎵的表面本徵-N+摻雜(Surfaceintrinsic-n+,SIN+)結構的表面費米能階及其表面態密度。根據熱離子幅射理論及電流傳輸理論,半導體表面費米能階VF及其表面態密度可由其表面勢壘與激發光強度的關係求得。本論文首先量取不同激發光強度下的光調制光譜並求出各不同激發光下的表面勢壘,再與理論所推導的公式擬合,求得砷銻化鎵的表面費米能階在導帶下0.66eV處,而其表面態密度則為9.96×1012cm-2,此結果為首次由實驗量得,尚未出現在任何文獻上。
其次為利用螢光光譜研究氮化銦的能隙及其載子濃度。樣品的結構為1μm的InN成長緩衝層AlN上,基板為Si(111),由其螢光光譜可求得氮化銦的能隙。由於氮化銦的能隙及其螢光光譜受到載子濃度的影響,把所得的螢光光譜與文獻中的理論公式擬合,可得氮化銦的載子濃度,所得的載子濃度,和文獻中的資料相吻合。
This thesis uses room temperature photoreflectance (PR) to investigate the Fermi level pinning and surface state density of a GaAs0.65Sb0.35 surface intrinsic-n+ (SIN+) structure. Base on the thermionic emission theory and current-transport theory, the surface Fermi level VF and the surface state density are determined experimentally from the dependence of the surface barrier height on the pump beam intensity. The surface state density Ds is estimated as approximately 9.96×1012cm-2, and the Fermi level is located 0.66 eV below the conduction band edge at the surface. The surface state density of GaAsSb has never been reported and is measured for the first time in our study.
The other part of this thesis measures the photoluminescence (PL) spectrum of an InN sample which consists of 1μm InN top layer on AlN buffer layer which has been previously grown on Si(111) substrate. The band gap of InN is determined directly from the PL spectrum. Since the band gap and PL spectrum are related with the carrier concentration, the carrier concentration of InN is determined by fitting the PL spectrum to the theoretical formula found in literature. The carrier concentration and its corresponding band gap obtained are consistent with those found in literature indicating that the PL spectrum provides a contactless and nondestructive approach to determine the Fermi level as well as the carrier concentration.
1. K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986)
2. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444 (1986)
3. R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974)
4. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commu. 37, 219 (1981)
5. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985);R. D. Dupuis, R. C. Miller and P. M. Petroff, Mat. Letts. 3, 398 (1985)
6. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987)
7. F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, 1980) Vol. 2, p. 109.
8. M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969) and Reference therein.
9. H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B36, 9384 (1987).
10. L. Esaki, in Proceedings of the 17th International Conference on the Physics of Semiconductors, Berkely, 1984, ed. by J. O. Chodi and W. A. Harrison (Spinger Verlay, N. Y. 1985) p.473.
11. L. Esaki in Recent Topics in Semiconductor Physics, ed. by Kamimurus and Toyozawa, World Scientific, Singpor, 1983, p.1.
12. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19, 6461 (1986).
13. W. Zhou, H. Shen, J. Pamulapati, P. Cooke and M. Dutta, Appl. Phys. Lett. 66, 607 (1995).
14. D. S. Chemla, B. Joseph, J. M. Kuto, T. Y. Chang, C. Klingshirn, G. Livescu and David A. B. Miller, IEEE J. Quantum Electron. vol. 24, 1664 (1988).
15. S. Monéger, Y. Baltagi, T. Benyattou, A. Tabata, B. Ragot, G. Guillot, A. Georgakilas, K. Zekentes and G. Halkias, J. Appl. Phys. 74, 1437 (1993).
16. Stephen Giugni, T. L. Tansley, F. Green, C. Shwe and M. Gal, J. Appl. Phys. 71, 3486 (1992).
17. L. Aigouy, F. H. Pollak and G. Gumbs, Appl. Phys. Lett. 70, 2562 (1997).
18. C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen and K. K. Tiong, J. Appl. Phys. 81, 400 (1997).
19. V. L. Alperovich, A. S. Jaroshevich, D. I. Lubyshev, V. P. Migal, V. V. Preobrazhenskii and B. R. Semjagin, Superlattices and Microstructures vol. 10, 131 (1991).
20. J. Humlicek, F. Lukes and K. Dloog, Superlattices and Microstructures vol. 9, 133 (1991).
21. M. Nakayama, T. Doguchi and H. Nishimura, J. Appl. Phys. 72, 2372 (1992).
22. P. A. M. Rodrigues, F. Cerdeira and J. C. Bean, Phys. Rev. B 46, 15263 (1992).
23. M. Nakayama, T. Fujita and H. Nishimura, Superlattices and Microstructures vol. 17, 31 (1995).
24. M. Vergohl, K. Dettmer and F. R. Kessler, J. Appl. Phys. 81, 1434 (1997).
25. M. Nakayama, T. Nakanishi, K. Okajima, M. Ando and H. Nishimura, Solid State Commun. 102, 803 (1997).
26. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
27. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
28. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Dimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop”ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743 (1996).
29. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, and P. Basmaji, J. Vac Sci Technol. B 14, 2212 (1996).
30. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).
31. R. Bhattacharya, C. Y. Lee, F. H. Pollak and D. M. Schleich, J. Non-Crystalline Solids, 91, 235 (1987).
32. O. J. Glembocki B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Appl. Phys. Lett., 46, 970 (1985).
33. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Proc. Photo-Optical Instrum. Eng., 524, 86 (1985).
34. R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and Aharoni, Phys. Rev., B 37, 4044 (1988); also Pro. Soc. Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 81 (1987); Solar Cells, 21, 371 (1987)
35. R. Glosser and N. Bottka, Proc. Soc. of Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 88 (1987).
36. H. Shen, F. H. Pollak and J. W. Woodall, J. Vac. Sci. Tech., B 8, 413 (1990).
37. P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
38. H. Nakanishi and K. Wada, Jpn. J. Appl. Phys. 32, 6206 (1993).
39. M. Sakai and M. Shinohara, J. Appl. Soc. Japn. Vol. 66, 738 (1997).
40. M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett. 59, 677 (1991).
41. H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863 (1993).
42. R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B37, 4044 (1988).
43. R. L. Ober, J. Pamulaoati, P. K. Bhattacharya and J. E. Oh, J. Electron Mat. 18, 379 (1989).
44. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, Accepted to J. Appl. Phys.1999
45. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett., 64, 3314 (1994).
46. T. T. Chiang and W. E. Spicer, J. Vac. Sci. Technol., A 7, 724 (1989).
47. J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).
48. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett., 67, 2350 (1995).
49. J. S. Hwang, W. Y. Chou. M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys. 82, 3888 (1997).
50. F. H. Pollak and H. Shen, in Proceeding of the Society of Photooptical Instrumentation Engineers (SPIE, Bellingham, 1898), Vol. 1037, P 16.
51. E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett., 46, 1230 (1981).
52. M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys., 56, 3214 (1984).
53. C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457 (1985).
54. K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).
55. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts., 52, 2058 (1988).
56. D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
57. D. E. Aspnes and A. A. Studna, Phys. Rev., B7, 4605 (1973).
58. H. R. Philipp and H. Ehrenreich, Phys. Rev., 129, 1550 (1963).
59. D. D. Sell and S. E. Stokowski, 1970, Proc. 10th Int. Conf. on the Physics of Semiconductors, Cambridge, Mass., eds. Keller et al. (USACE Div. Techn. Inform. CONF-70081, Springfield,) p. 417.
60. O. J. Glembocki, N. Bottka and J. E. Furneaux, J. Appl. Phys. 57, 432 (1985).
61. A. J. Shields, P. C. Klipstein, M. S. Skolnick, G. W. Smith and C. R. Whitehouse, Phys. Rev. B 42, 5879 (1990).
62. N. Jaffrezic-Renault, H. Perrot and C. Nguyen van Huong, Electrochimica Acta 34, 1739 (1989).
63. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19 6461 (1986).
64. C. Vazquez-López, H. Navarro, Raúl Aceves, M. C. Vargas and C. A. Menezes, J. Appl. Phys. 58, 2066 (1985).
65. P. C. Klipstein, P. R. Tapster, N. Apsley, D. A. Anderson, M. S. Skolnick, T. M. Kerr and K. Woodbridge, J. Phys. C: Solid State Phys. 19, 857 (1986).
66. J. M. Wrobel, U. K. Reddy, L. C. Bassett, J. L. Aubel and S. Sundaram, J. Appl. Phys. 60, 368 (1986).
67. A. Dodabalapur, V. P. Kesan, D. P. Neikirk, B. G. Streetman, M. H. Herman and I. D. Ward, J. Electron. Mater. 19, 265 (1990).
68. T. Nishino, J. Cryst. Growth 98, 44 (1989).
69. Y. S. Huang, S. S. Lin, J. S. Sheu, W. M. Shen and F. H. Pollak, Solid State Commun. 76, 1093 (1990).
70. I. J. Fritz, T. M. Brennan and D. S. Ginley, Solid State Commun. 75, 289 (1990).
71. S. Y. Chung, D. Y. Lin, Y. S. Huang and K. K. Tiong, Semicond. Sci. Technol. 11, 1850 (1996).
72. M. Certier, H. Erguig, M. Soltani and T. Sauder, Physica Status Solidi B 168, 361 (1991).
73. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg and J. C. Bean, Phys. Rev. B 44, 5955 (1991).
74. J. Calatayud, J. Allegre, H. Mathieu, N. Magnea and H. Mariette, Phys. Rev. B 47, 9684 (1993).
75. T. P. Pearsall, Phys. Rev. B 48, 2795 (1993).
76. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg, and J. C. Bean, Surf. Sci. 267, 99 (1992).
77. C. Armelles and V. R. Velasco, Phys. Rev. B 54, 16428 (1997).
78. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. Part 1 35, 5946 (1996).
79. A. S. Lee and P. M. Norris, Rev. Sci. Instrum. 68, 1307 (1997).
80. V. Bellani, G. Guizzetti, L. Nosenzo, E. Reguzzoni, A. Bosacchi and S. Franchi, Superlattices and Microstructures 13, 147 (1993).
81. T. Miyazaki and S. Adachi, Jpn. J. Appl. Phys. Part 1 33, 5817 (1994).
82. S. Ozaki and S. Adachi, J. Appl. Phys. 78, 3380 (1995).
83. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston (eds), Semiconductors and Semimetals, Vol. 36, Academic Press, New York, 1992 pp221-292.
84. A. K. Berry, D. K. Gaskill, G. T. Stauf and Bottka, Appl. Phys. Lett. 58, 2824 (1991).
85. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).
86. J. Misiewicz, P. Markiewicz, J. Rebisz, Z. Gumienny, M. Panek, B. Sciana and M. Tlaczala, Phys. Stat. Sol. (b) 183, K43 (1994).
87. S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1 (1996).
88. Y. C. Wang, W. Y. Chou, W. C. Hwang, and J. S. Hwang, Solid State commu. 104, 717 (1997).
89. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol., B 7, 804 (1989).
90. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087.
91. Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M. Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th International Conference on the Physics of Semiconductors, Greece, 1990.
92. M. Kallergi, B. Roughani, J. Aubel, S. Sundaram, T. Chu, S. Chu and R. Green, J. Vac. Sci. Technol. A 8, 1907 (1990).
93. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83, 2857 (1998).
94. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
95. D. E. Aspnes, in Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
96. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).
97. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
98. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
99. O. Madelung (Editor) , Semiconductors- Basic Data.
100. C.Bru-Chevallier, H.Chouaib, J.Ar camone, T.Benyattou, H.Lahreche, P.Bove, Thin Solid Films 450 (2004) 151
101. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett., 67, 2350 (1995).
102. H. Shen, M. Dutta, J. Appl. Phys., 78, 2151 (1995).
103. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Oxford, New York, 1988).
104. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087
105. S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology (Wiley, New York, 1985).
106. X. Yin, H. M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol., A10, 133 (1992).
107. W. Y. Chou, G.S. Chang, W. C. Hwang, and J. S. Hwang, J. Appl. Phys., 83, 3690 (1998)
108. D. Yan, E. Look, X. Yin, F. H. Pollak, and J. M. Woodall, Appl. Phys. Lett., 65, 186 (1994).
109. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 2779-2808, 94, 5 (2003)
110. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992)
111. V. W. L. Chin, T. L. Tansely, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)
112. R. Juza, and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938)
113. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov , V. A. Vekshin, F. Bechstedt , J. Furthmu‥ller, J.Aderhold, J. Graul, A. V. Mudryi , H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Stat. Sol. (b) 234 787 (2002)
114. S. P. Fu, Y. F. Chen, Keewee Tan, Solid State Communications 137 (2006) 203
115. 林弘偉,"氮化銦磊晶及量子點材料之研究",清華大學物理所, 碩士論文(2004)
116. M. D. Yang and J. L. Shen , M. C. Chen, C. C. Chiang, S. M. Lan, T. N. Yang ,P. J. Huang, S. C. Hung, G. C. Chi, W. C. Chou, J.Appl.Phys. 102, 113514 (2007)
117. S P Fu, T T Chen, Y F Chen Semicond. Sci. 21 (2006) 244
118. A. Kaminska, G. Franssen , T. Suski, I. Gorczyca, N. E. Christensen, A. Svane, A. Suchocki, H. Lu, W. J. Schaff,E. Dimakis,and A. Georgakilas , Phys. Rev. B 76 (2007) 075203
119. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov , V. A. Vekshin, F. Bechstedt , J. Furthmu‥ller, J.Aderhold, J. Graul, A. V. Mudryi , H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Stat. Sol. (b) 234 787 (2002)
120. E. Burstein, Phys. Rev. 93, 632 (1954).