| 研究生: |
江世雄 Chiang, Shin-Hsiung |
|---|---|
| 論文名稱: |
半導體廠房水回收系統設計 Water Recycling System Design for Semiconductor Plant |
| 指導教授: |
張行道
Chang, Shing-Tao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 水資源管理 、半導體廠房 、水回收系統設計 、製程用水 、廢水回收 |
| 外文關鍵詞: | water resource management, semiconductor fab, water recycling system design, processing water, waste water recycling |
| 相關次數: | 點閱:140 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高科技產業隨製程技術與產品規格要求,用水水質及需求量提高,新廠或擴建的規劃設計需考量不同方案,有效作好水資源回收及管理,以降低對原水的依賴。
本研究建構半導體廠房水回收系統設計的方案,利用某半導體公司廠房做個案研究,納入相關廠務人員組成研究小組,分析過去資料、經驗。首先找出水回收系統發展四個面向的26個設計因子,在符合成效與專案階段要求下,四面向重要性依序為需求、技術、成本、法規。並得到各個面向因子於回收率達成、建廠時效、操作便利、操作安全等四個成效考量下之重要性排序。再以三個廠房建構經驗,得出搭配設計因子之隱性法則。
設計因子考量法則在「規劃設計」階段之使用程度最高,其次是「系統運轉」階段,「建造」階段最少,表示對半導體廠房水回收系統設計,在規劃設計時考量各因子,較能達到目標。並歸納設計因子考量法則的重要程度,依系統功能分類,處理系統排序依序為:廢水回收、製程廢水直接回收、廢水處理系統、超純水處理回收,基礎系統排序為:廢水分流收集、水源儲存及分配、次級用水系統。
利用上述結果,依照個案廠務建構及運轉經驗,以回收比率、投資成本、運轉成本綜合分析,得到廢水回收子系統建構順序。最後依所得結果,提出半導體廠房水回收系統四個策略方案,為「一次到位」、「一次到位兩階段擴充」、「系統逐步建構」、「系統逐步建構併兩階段擴充」,可供不同廠房大小、不同資源狀況或條件的情況參考使用。
Water quality and demand have raised since the high-tech industry has proposed higher process and product standards. Consequently, for planning and designing new plants or expansion, water recycling and management should be addressed to lower the demand of water.
The study established water recycling system design for semiconductor plants. The case study was conducted with three fabs of a semiconductor company. The related facility members were formed a team to analyze past information and utilize experiences. First, twenty-six factors for water recycling system design were identified in four dimesions of demand, technique, cost and regulations. The importance of the factors relies on recycling rate achievement, effectiveness of fab construction, operation safety and operation convenience. Moreover, three fab construction experiences offered implicit design principles.
Design factors are prevalent in the design stage, then the system operation stage, and the least in the construction stage. Therefore, Semiconductor fab water recycling system design can better achieve the goal in the design stage. When considering the significance of design factors, the order for processing function systems would be: waste water recycling, processing waste water direct recycling, waste water treatment system and ultra pure water recycling. The priority of basic systems would be: waste water divergence and collection, water resource storage and distribution, and sub-water system.
Based on prior facility construction and operation experiences, the sequence of waste water recycling sub-system is developed through analyzing recycling rate, investment cost and operation cost. The results contributed to four strategies of semiconductor fab water recycling system: one-time work, one-time work with two stage expansion, step-by-step system development, and step-by-step system development with two stage expansion. The four strategies can be used on other conditions such as different sizes of fab with different resources.
1. Allan, J.A. (1998). “Virtual water: a strategic resource, global solution to regional deficits.” Groundwater, 36(4), 545-546.
2. Blanchard B. S. (2008), System Engineering Management, Wiley, N.Y.
3. CDP (2010), ”CDP Water Disclosure 2010 Global Report.” Carbon Disclosure Project.
4. CDP (2009), “The case of water Disclosure.” Carbon Disclosure Project.
5. CEC (2007). “Communication from the Commission to the European Parliament and the Council”, CEC, Brussels.
6. Dakwala, M., Mohanty B. and Bhargava, R. (2009). “A process integration approach to industrial water conservation: a case study for an Indian starch industry,”Journal of Cleaner Production, 17, 1654-1662.
7. DeGenova, J. and Shadman, F. (1997). ”Recovery, reuse, and recycle of water in semiconductor wafer fabrication facilities.” Environmental Progress, 16, 263-267.
8. Dym, C. L. and Little, P. (1999). Engineering design: a project-Based Introduction , Wiley, N.Y.
9. EU Water Framework Directive. (2000),“Establishing a framework for community action in the field of water policy”, European Parliament Council, October. 23, Europe.
10. Hoekstra, A.Y. (2003). “Virtual water trade: proceedings of international expert meeting on virtual water trade.” Value of water Rserch Report, 12, UNESCO-IHE.
11. Hoekstra, A. Y. and Hung, P. Q. (2002).”Virtual water trade: a quantification of virtual water flows between nations in relation to international corp trade.” Value of water Rserch Report, 11, UNESCO-IHE.
12. Hoekstra, A. Y. and Chapagain, A. K. (2007). “Water footprints of nations:water use by people as a function of their comption pattern.” Water Resources Management, 21-1, 35-48.
13. Hoekstra, A. Y. and Chapagain, A. K. (2008). Globalization of water:Sharing the planet freshwater resources, Blackwell, UK
14. Jasch, C. (2003). “The use of environmental management accounting (EMA) for identifying environmental costs.” Journal of Cleaner Production, 11, 667-676.
15. Lee, L. L. and Chang, C. N. (2004). “Applying cost and regression analyses tooptimize semiconductor processing water management.” Environmental Informatics Archives, Vol.2, 175-179.
16. Lambooy, T. (2011). “Corporate social responsibility: sustainable water use.” Journal of Cleaner Production, Vol.19, 852-866.
17. Lin, W. S. (2006), “Review of water use and water conservation technology in High-Tech industry.” Taiwan Water Industry Conference, 3(21), 26-27.
18. Morrison, J., Morikawa, M., Murphy. M., and Schulte, P. (2009). Water scarcity & slimate shange: growing risks for businesses & investors, CERES , Boston, MA.
19. Wang, B. J., Lee, L. L., Chen, C. H., Chang, C. N., and Chao, A. C. (2005). “Optimization of semiconductor processing water management strategy.” Journal of Environmental informatics, 5(2), 82-89.
20. WBCSD (2005). ”Water Facts and Trends.” World Business Council on Sustainable Development, Washington
21. Zhang, Y., Wang, H. and Wang, J. (2009). Cost analysis of reclaimed water treatment: a case study in Beijing, Major projects on control and rectification of water body pollution, IEEE.
22. 林文雄、陳建宏、張珮琳、金光祖、曾旭廷、李國宏、陳俊偉(民95),「高科技產業用水特性及節水技術之研究」,2006水利產業研討會論文集,第3卷, 21-32頁。
23. 林文雄、盧文俊、黃序文(民94),「南部科學工業園區94年節水技術輔導結案報告」,工研院能資所。
24. 林文雄、盧文俊、黃序文(民94),「新竹科學工業園區94年節水技術輔導結案報告」,工研院能資所。
25. 洪仁陽、盧至人、林明德、胡慶祥、吳麗芬 (民91),「水回收再利用(上)
」,國立編譯館主編。
26. 夏羅振祥(民98),「高科技產業合理用水回收率之探討」,國立臺灣大學土木工程學研究所碩士論文,5-30頁。。
27. 陳仁仲、盧文俊、李士畦(民90),「工業用水效率與回收率的內涵探討」,工業污染防治季刊第77期,122-159頁。
28. 陳建宏、張珮琳、金光祖(民94),「工業用水回收率合理性之探討、研擬與實用」,第十五屆下水道與水環境再生研討會論文集,1-3頁。
29. 陳亮清(民94),「工業用水合理回收率與用水需求之研究」,國立台灣海洋大學河海工程學系博士論文,65-81頁。
30. 許家榮(2008),「高科技廠房水資源管理研究-提昇製程用水回收率影響因素探討」,國立臺灣大學土木工程學研究所碩士論文,18-30頁。
31. 黃俞昌(民94),「科學園區節約用水之努力與做法」,節水季刊37期,15-16頁。
32. 張陸滿(民97),「奈米時代之高科技廠房設施工程」,土木水利學刊,第35卷,第1期,15–26頁。
33. 張添晉、馬鴻文 (民85),「水再利用風險值研究」,經濟部水利署。
34. 楊萬發、駱尚廉(民95),「自來水及下水道工程」,曉園出版社有限公司。
35. 劉寶勤、封志明、姚治君(民95),「虛擬水研究的理論、方法及其理論進展」,資源科學,第28卷,第1期,120-127頁。
36. 劉載春(民93),「工業合理用水及節水之研究以電子業為例」,國立台灣大學環境工程學研究所碩士論文,2-48頁。
37. 顏登通(民97),「高科技廠務」,全華科技圖書股份有限公司。
38. 經濟部水利署 (民95),「經濟部水利署水資源白皮書」,經濟部水利署,台北。
39. 台灣積體電路股份有限公司,台積電年報,2007年
40. 台灣積體電路股份有限公司,台積電年報,2010年
41. 台灣社會企業責任網站http://csr.moea.gov.tw/articles/articles.asp