簡易檢索 / 詳目顯示

研究生: 彭楷涵
Peng, Kai-Han
論文名稱: 應用條件式生成對抗網路於潛伏指紋強化
Conditional Generative Adversarial Network for Latent Fingerprint Enhancement
指導教授: 陳建旭
Chen, Chien-Hsu
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系碩士在職專班
Department of Industrial Design (on-the-job training program)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 52
中文關鍵詞: 條件式生成對抗網路指紋強化影像處理深度學習
外文關鍵詞: Conditional Generative Adversarial Networks, Fingerprint Enhancement, Image Processing, Deep Learning
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 指紋具有個化能力,因此指紋鑑定是偵查人員偵辦刑案時的利器之一,也是院檢起訴、審判時常常引用的重要證據,而我國指紋比對須滿足12個特徵點相符才能判定兩枚指紋相符,惟刑案現場遺留之潛伏指紋(latent fingerprints)相較於標準指紋卡上的三面印(rolled)、平面印(plain)指紋,通常有紋線不清的問題,鑑定人員若無法從中找出12個以上的特徵點,便會認定該現場指紋的特徵點不足,無法進行後續比對,因此,若能針對紋線不清的區域進行強化,使更多的指紋特徵點得以辨識,讓後續比對階段可以順利進行,除了可以增加比中率,亦提升鑑定人員的比對效率,對指紋鑑定工作將有相當大的幫助。
    本研究以pix2pix網路為基礎,建構強化潛伏指紋紋線的條件式生成對抗網路(FEGAN),並使用IIIT-D latent fingerprint、IIIT-D MSLFD資料集的真實潛伏指紋影像作為訓練樣本。實驗結果使用IIIT-D MOLF DB4 Latent資料集的NFIQ2分數進行評估,結果顯示,NFIQ2分數0以上的樣本比例,可由強化前的2.8%提升至36.8%,以FpMV指紋特徵點檢視工具觀察,強化後的特徵點數明顯增加,指紋辨識準確率方面,與DB1 Lumidgm比對結果,Rank-50準確率可由強化前的6.06%,大幅提升至46.73%。

    Latent fingerprints left at crime scenes are usually unclear. Therefore, if the areas with unclear ridges can be enhanced, more minutiae can be identified, enabling the following comparison stage to be carried out smoothly. Based on the pix2pix, this study constructs a fingerprint enhancement conditional generative adversarial network (FEGAN) that enhances the ridges of latent fingerprints and uses the authentic latent fingerprint images of the IIIT-D latent fingerprint and IIIT-D MSLFD datasets as training data. The experimental results are evaluated by using the IIIT-D MOLF DB4 Latent dataset. The results show that the proportion of samples with NFIQ2 score above 0 was increased from 2.8% to 36.8%. Observed with the FpMV, the number of minutiae after enhancement increased significantly. In terms of fingerprint identification accuracy, the Rank-50 accuracy was greatly improved from 6.06% to 46.73% when compared with the DB1 Lumidgm. These results show that FEGAN was able to distinguish between fingerprints and interfering factors after the training, resulting in clearer ridges than before the enhancement.

    摘要 ii Conditional Generative Adversarial Network for Latent Fingerprint Enhancement iii 誌謝 vi 目錄 vii 表目錄 ix 圖目錄 x 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 3 1.4 研究流程與架構 4 第2章 文獻探討 5 2.1 指紋 5 2.1.1 指紋採取的方法 6 2.1.2 指紋鑑定流程 6 2.1.3 指紋特徵點 7 2.1.4 自動指紋辨識系統 8 2.2 機器學習與深度學習 9 2.2.1 卷積神經網路 9 2.2.2 生成對抗網路 10 2.2.3 圖像翻譯 12 2.3 相關研究 12 2.3.1 基於濾波器的指紋影像強化技術 13 2.3.2 基於機器學習的指紋影像強化技術 13 第3章 研究方法 16 3.1 模型系統架構 16 3.2 神經網路架構 17 3.2.1 生成器 17 3.2.2 判別器 21 3.3 目標函數 23 3.4 訓練資料集與前處理 24 3.5 硬體條件與訓練參數 28 3.6 評估指標 28 第4章 實驗結果 30 4.1 訓練情形 30 4.2 結果分析 33 4.2.1 指紋品質 33 4.2.2 結構相似性指標(SSIM)與峰值訊噪比(PSNR) 34 4.2.3 特徵點數量 35 4.2.4 指紋辨識準確率 38 4.3 應用場景 39 第5章 結論、討論與建議 41 5.1 結論 41 5.2 討論 41 5.2.1 研究限制與研究倫理 41 5.2.2 證據能力問題 42 5.3 建議 42 參考文獻 44 附錄A 其他神經網路嘗試結果 51 A.1 影像填補方法 51 A.2 pix2pix及CycleGAN 52

    王建堯、王家慶、吳信輝、李宏毅、高虹安、張智星…蘇上育等 (2019).人工智慧導論.新北市:全華圖書。[Wang, J. Y., Wang, J. Q., Wu, X. H., Li, H. Y., Gao, H. A., Zhang, Z. X., … Su, S. Y. (2019). Introduction to Artificial Intelligence. New Taipei City, Taiwan, ROC: Chuan Hwa Book.]
    內政部警政署刑事警察局(2014).自行研究報告:掌紋電腦系統於犯罪現場紋痕比對研究.取自https://cib.npa.gov.tw/ch/app/data/doc?module=wg135&detailNo=793353972898361344&type=s [Criminal Investigation Bureau, NPA, MOI, Taiwan, ROC. (2014). Research project report: Research on the Aid of the Automated Palmprint Identification System for the Crime Scene Cases. Retrieved from https://cib.npa.gov.tw/ch/app/data/doc?module=wg135&detailNo=793353972898361344&type=s]
    內政部警政署刑事警察局(2016).自行研究報告:常見偽(變)造指紋識別與鑑定之初探.取自https://cib.npa.gov.tw/ch/app/data/doc?module=wg128&detailNo=791521599277789184&type=s [Criminal Investigation Bureau, NPA, MOI, Taiwan, ROC. (2016). Research project report: A Preliminary Study of Recognition and Identification Method of Common Forged Fingerprints. Retrieved from https://cib.npa.gov.tw/ch/app/data/doc?module=wg128&detailNo=791521599277789184&type=s]
    內政部警政署刑事警察局(2017).自行研究報告:精進無名屍指紋身分比對效能之研究.取自https://cib.npa.gov.tw/ch/app/data/doc?module=wg128&detailNo=791522450549534720&type=s [Criminal Investigation Bureau, NPA, MOI, Taiwan, ROC. (2017). Research project report: Study on Effectiveness of Fingerprint Cross-matching for Unidentified Corpses. Retrieved from https://cib.npa.gov.tw/ch/app/data/doc?module=wg128&detailNo=791522450549534720&type=s]
    李昌鈺(2006).刑案現場蒐證(林茂雄譯).桃園市:中央警察大學。(原著出版於1995)[Lee, H. (2006). Crime scene investigation (Lin, M. X, Trans.). Taoyuan City, Taiwan, ROC: Central Police University. (Original work published 1995)]
    林大貴(2017).TensorFlow+Keras深度學習人工智慧實務應用.臺北市:博碩文化。[Lin, D. G. (2017). TensorFlow+Keras Practical application of deep learning and artificial intelligence. Taipei City, Taiwan, ROC: DrMaster.]
    林吉鶴(2009).指紋學.桃園市:中央警察大學。[Lin, J. H. (2009). Dactylography. Taoyuan City, Taiwan, ROC: Central Police University.]
    林幸姿(2020).應用幾何特性估算殘缺指紋中心位置之研究(碩士論文).桃園市:中央警察大學鑑識科學研究所。[Lin, X. Z. (2020). Estimation of the Center of a Partial Fingerprint Using Geometric Characteristics. Department of Forensic Science, Central Police University, Taoyuan City, Taiwan, ROC.]
    金孟華、陳又寧(2015).論圖案與印記證據之證據能力.中研院法學期刊,17,421-476。[Chin, M. H., & Chen, Y. N. (2015). The Admissibility of Pattern and Impression Evidence. Academia Sinica Law Journal, 17, 421-476.]
    斎藤康毅(2017).Deep Learning:用Python進行深度學習的基礎理論實作(吳嘉芳譯).臺北市:碁峰資訊。(原著出版於2016)[Saitoh, K. (2017). Deep Learning: Basic Theory Implementation of Deep Learning with Python. (Wu, J. F., Trans.). Taipei City, Taiwan, ROC: GOTOP. (Original work published 2016)]
    曾宗嶽、程曉桂、彭莉娟、黃女恩(1999).指紋鑑識.臺北市:內政部警政署刑事警察局。[Zeng, Z. Y., Cheng, X. G., Peng, L. J., & Huang, N. E. (1999). Zhiwen jianzhi. Taipei City, Taiwan, ROC: Criminal Investigation Bureau, NPA, MOI]
    程曉桂(2000).指紋採證與實務.臺中市:書佑文化事業有限公司。[Cheng, X. G. (2000). Zhiwen caizheng yu shiwu.Taichung City, Taiwan, ROC: Shuyou wenhua shiye Co. Ltd.]
    Bontrager, P., Roy, A., Togelius, J., Memon, N. D., & Ross, A. A. (2018). DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution*. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1-9.
    Chavan, S., Mundada, P., & Pal, D. (2015). Fingerprint authentication using Gabor filter based matching algorithm. 2015 International Conference on Technologies for Sustainable Development (ICTSD), 1-6.
    Dabouei, A., Soleymani, S., Kazemi, H., Iranmanesh, S. M., Dawson, J. M., & Nasrabadi, N. M. (2018). ID Preserving Generative Adversarial Network for Partial Latent Fingerprint Reconstruction. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1-10.
    DeCann, B., & Ross, A. A. (2013). Relating ROC and CMC curves via the biometric menagerie. 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1-8.
    Dong, G., Guo, Z., Zhou, Z., Zhang, D., & Wo, B. (2015). Coherence-enhancing diffusion with the source term. Applied Mathematical Modelling, 39, 6060-6072.
    Fiumara, G., Flanagan, P., Schwarz, M., Tabassi, E., Boehnen, C. (2018). NIST Special Database 301 Nail to Nail (N2N) Fingerprint Challenge Dry Run. Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD. doi:10.18434/T4/1502474
    Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative Adversarial Nets. Paper presented at the NIPS.
    Gottschlich, C. (2011). Curved Gabor Filters for Fingerprint Image Enhancement. Arxiv, abs/1104.4298.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.
    Holder, E. H., Robinson, L. O., & Laub, J. H. (2011). The fingerprint sourcebook. Washington, DC: U.S. Dept. of Justice, Office of Justice Programs, National Institute of Justice.
    Hong, L., Wan, Y., & Jain, A. K. (1998). Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. Pattern Anal. Mach. Intell., 20, 777-789.
    Horé, A., & Ziou, D. (2010). Image Quality Metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition, 2366-2369.
    Huang, X., Qian, P., & Liu, M. (2020). Latent Fingerprint Image Enhancement Based on Progressive Generative Adversarial Network. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3481-3489.
    International Association for Identification. (2010). The Report of the International Association for Identification, Standardization II Committee (No. 233980). Retrieved from https://www.ojp.gov/pdffiles1/nij/grants/233980.pdf
    Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967-5976.
    Jiang, Y.-f., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., . . . Wang, Z. (2021). EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Transactions on Image Processing, 30, 2340-2349.
    Joshi, I., Anand, A. P., Vatsa, M., Singh, R., Roy, S. D., & Kalra, P. K. (2019). Latent Fingerprint Enhancement Using Generative Adversarial Networks. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 895-903.
    Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture for Generative Adversarial Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4396-4405.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84 - 90.
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324.
    Ledig, C., Theis, L., Huszár, F., Caballero, J., Aitken, A. P., Tejani, A., . . . Shi, W. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 105-114.
    Li, J., Feng, J., & Kuo, C.-C. J. (2018). Deep convolutional neural network for latent fingerprint enhancement. Signal Process. Image Commun., 60, 52-63.
    Liu, G., Reda, F., Shih, K.J., Wang, T., Tao, A., & Catanzaro, B. (2018). Image Inpainting for Irregular Holes Using Partial Convolutions. ArXiv, abs/1804.07723.
    Liu, Y., Tang, Y., Li, R., & Feng, J. (2019). Cooperative Orientation Generative Adversarial Network for Latent Fingerprint Enhancement. 2019 International Conference on Biometrics (ICB), 1-8.
    Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. Arxiv, abs/1411.1784.
    National Research Council. (2009). Strengthening Forensic Science in the United States: A Path Forward. CrimRxiv.
    Pan, X., Dai, B., Liu, Z., Loy, C. C., & Luo, P. (2021). Do 2D GANs Know 3D Shape? Unsupervised 3D shape reconstruction from 2D Image GANs. Arxiv, abs/2011.00844.
    Qian, P., Li, A., & Liu, M. (2019). Latent Fingerprint Enhancement Based on DenseUNet. 2019 International Conference on Biometrics (ICB), 1-6.
    Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR, abs/1511.06434.
    Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Paper presented at the MICCAI.
    Salamon, W. J. & Ko, K. (2014). Fingerprint minutiae viewer (FpMV). Retrieved from https://www.nist.gov/services-resources/software/fingerprint-minutiae-viewer-fpmv
    Sankaran, A., Agarwal, A., Keshari, R., Ghosh, S., Sharma, A., Vatsa, M., & Singh, R. (2015). Latent fingerprint from multiple surfaces: Database and quality analysis. 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1-6.
    Sankaran, A., Dhamecha, T. I., Vatsa, M., & Singh, R. (2011). On matching latent to latent fingerprints. 2011 International Joint Conference on Biometrics (IJCB), 1-6.
    Sankaran, A., Vatsa, M., & Singh, R. (2012). Hierarchical fusion for matching simultaneous latent fingerprint. 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 377-382.
    Sankaran, A., Vatsa, M., & Singh, R. (2015). Multisensor Optical and Latent Fingerprint Database. IEEE Access, 3, 653-665.
    Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556.
    Svoboda, J., Monti, F., & Bronstein, M. M. (2017). Generative convolutional networks for latent fingerprint reconstruction. 2017 IEEE International Joint Conference on Biometrics (IJCB), 429-436.
    Tabassi, E. , Olsen, M. , Bausinger, O. , Busch, C. , Figlarz, A. , Fiumara, G. , . . . Schwaiger, M. (2021). NIST Fingerprint Image Quality 2, NIST Interagency/Internal Report (NISTIR). National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.IR.8382.
    Tang, Y., Gao, F., Feng, J., & Liu, Y. (2017). FingerNet: An unified deep network for fingerprint minutiae extraction. 2017 IEEE International Joint Conference on Biometrics (IJCB), 108-116.
    Weickert, J. (2004). Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision, 31, 111-127.
    Yu, J., Lin, Z. L., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2018). Generative Image Inpainting with Contextual Attention. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5505-5514.
    Yu, J., Lin, Z.L., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2019). Free-Form Image Inpainting With Gated Convolution. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 4470-4479.
    Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), 2242-2251.

    無法下載圖示 校內:2027-08-31公開
    校外:2027-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE