簡易檢索 / 詳目顯示

研究生: 易瑋筠
Yi, Wei-Yun
論文名稱: 蝴蝶蘭的RELATED TO ABI3 AND VP1 (RAV)基因之鑑定並探討其功能
Identification and characterization of RAV genes in Phalaenopsis orchid
指導教授: 蔡文杰
Tsai, Wen-Chieh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 38
中文關鍵詞: 蝴蝶蘭 RAV gene開花調控
外文關鍵詞: Phalaenopsis, RAV gene, flowering time
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RAV家族的轉錄因子被歸類為植物特異性的 AP2/EREBP (APETALA2) 超家族的成員,蛋白質結構具有兩個 DNA 結合域。它們的功能涉及多個領域,例如調控植物發育以及對病原體感染或者其他非生物脅迫的防禦反應。蘭科植物是開花植物中的一大家族,其種類約佔了被子植物的10%。它們包含超過29,000個物種,是最多樣、分布最廣闊的被子植物之一,並幾乎可以在地球上的所有棲息地中找到。蘭科包括5個亞科,包括Apostasioideae、 Vanilloideae、 Cypripedioideae、 Orchidoideae和Epiendroideae,並以其獨特的花形態和生殖生物學而著稱。雖然過去已有在其他植物中探討RAV基因的相關研究,但它們在蘭花所扮演的角色尚未有相關的研究。
    首先,從OrchidBase中檢索到2段RAV的序列,分別命名為PeRAV1 和 PeRAV2並將其與擬南芥和水稻的RAV序列進行比對。我們發現蝴蝶蘭 PeRAV1 和 PeRAV2 與其他物種的RAV基因序列,特別是AP2和B3兩個DNA 結合域非常相似,尤其是。此外,為了探究蘭科植物RAV基因之間的進化關係,從NCBI中收集了雙子葉植物和單子葉植物的RAV蛋白質序列進行分析,並構建了系統發育樹。PeRAV1及PeRAV2以及蘭科植物的RAV蛋白質形成單系類群。在時間及空間表現模式分析結果,PeRAVs主要在花和葉中表達,並且PeRAV2的表現量比PeRAV1的表現量多出近10倍,推測蝴蝶蘭PeRAV2的功能可能比PeRAV1更重要。酵母菌雙雜交分析結果顯示,PeRAV1有能力和PeRAV2形成異源雙聚體,但兩者都無法形成同源雙聚體。分別大量表達PeRAV1以及PeRAV2在擬南芥,和野生型植株比較發現延遲開花時間。然而,分別大量表達PeRAV1-SRDX以及PeRAV2-SRDX在擬南芥則可以促進擬南芥開花。進一步以病毒誘導基因靜默(Virus-induced gene silencing)功能分析,發現被靜默的植株比對照組開花時間快,顯示蝴蝶蘭的開花時間明顯受到延遲。綜合以上,PeRAV1及PeRAV2以異源雙聚體具有調控蝴蝶蘭開花的功能。

    Transcription factors of the RAV (RELATED TO ABI3 AND VP1) family are classified as members of the AP2/EREBP (APETALA2) superfamily. They are plant-specific and possess two DNA-binding domains(AP2、B3). They are involved in multiple functions such as different aspects of plant development and response to pathogen infections and abiotic stresses.
    Orchidaceae is the family with the largest number of species, accounting for about 10% of angiosperms. They contain more than 29,000 species and can be found in almost all habitats on earth. Orchidaceae includes five subfamilies, namely Apostasioideae, Vanilloideae, Cypripedioideae, Orchidoideae and Epiendroideae. They are is known for unique flower morphology and reproductive biology. Although RAV genes have been studied in many other plants, their characteristics in orchids have not yet been addressed.
    Two of RAV genes, PeRAV1 and PeRAV2, were identified and retrieved from OrchidBase and compared them with those of Arabidopsis and rice. BothPeRAV1 and PeRAV2 have two DNA-binding domains and are homologous to the sequences of RAVs in other plant species. Phylogenetic analysis results showed that PeRAVs could form a monophyletic relationship with other orchid RAVs. Spatial and temporal gene expression analysis results indicated that PeRAVs are mainly expressed in flowers and leaves, and the expression level of PeRAV2 was much about 10-fold than that of PeRAV1, suggesting that PeRAV2 might be more important. PeRAV1 and PeRAV2 formed heterodimers in yeast two-hybrid analysis, but either of them could not respectively form homodimer. Ectopically overexpression of PeRAV1 or PeRAV2 in Arabidopsis showed that the flowering time was prolonged compared to that of wild type. However, respective overexpression of PeRAV1- and PeRAV2-SRDX showed opposite phenotypes of promoting flowering as compared to that of overexpression of PeRAVs. Furthermore, virus-induced gene silencing (VIGS) of PeRAVs in Pahalenopsis showed delayed flowering. Together, the PeRAVs were involved in delayed flowering.

    中文摘要 i 誌謝 iv Contents v List of Table vii List of Figure viii 1. Introduction - 1 - 1.1 Orchidaceae - 1 - 1.1.1 Evolution of Orchidaceae - 1 - 1.1.2 Reproductive biology of orchids - 2 - 1.1.3 Unique control system of orchid ovule development - 3 - 1.2 RAV family - 4 - 1.2.1 AP2/ERF family - 4 - 1.2.2 RAV family - 5 - 1.2.3 RAV family function - 5 - 2. Aim 7 3. Materials and Methods 8 3.1 Plant materials 8 3.2 Phylogenetic Analyses 8 3.3 RNA extraction 9 3.4 Expression pattern analysis 10 3.5 Yeast two hybrid analysis 11 3.6 Arabidopsis transformation 11 3.7 Virus-induced gene silencing (VIGS) 12 4. Results 13 4.1 Isolation and identification of PeRAV genes and sequence analysis 13 4.2 Phylogenetic analysis 13 4.3 Expression pattern analysis of PeRAVs using qRT-PCR 14 4.4 Yeast two hybrid analysis 15 4.5 Functional characterization of PeRAVs by using transgenic Arabidopsis 15 4.6 Virus-induced gene silencing (VIGS) 17 5. Discussion 18 5.1 Phalaenopsis RAV genes 18 5.2 PeRAVs may be required for development in Phalaenopsis 18 5.3 PeRAVs are required for regulating development in Arabidopsis 19 5.4 PeRAVs regulate floral transition in Phalaenopsis 21 References 22

    Aguilar‐Jaramillo, A.E., Marín‐González, E., Matías‐Hernández, L., Osnato, M., Pelaz, S., and Suárez‐López, P. (2019). TEMPRANILLO is a direct repressor of the microRNA miR172. The Plant Journal 100, 522-535.

    Castillejo, C., and Pelaz, S. (2008). The Balance between CONSTANS and TEMPRANILLO Activities Determines FT Expression to Trigger Flowering. Current Biology 18, 1338-1343.

    Chen, C., Li, Y., Zhang, H., Ma, Q., Wei, Z., Chen, J., and Sun, Z. (2021). Genome-Wide Analysis of the RAV Transcription Factor Genes in Rice Reveals Their Response Patterns to Hormones and Virus Infection. Viruses 13, 752.

    Chen, J.-C., and Fang, S.-C. (2016). The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reproduction 29, 179-188.

    Chen, Y.H., Tsai, Y.J., Huang, J.Z., and Chen, F.C. (2005). Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Research 15, 639-657.

    Crane, P.R., Friis, E.M., and Pedersen, K.R. (1995). The origin and early diversification of angiosperms. Nature 374, 27-33.

    Duncan, R.E., and Curtis, J.T. (1942). Intermittent Growth of Fruits of Cypripedium and Paphiopedilum. A Correlation of the Growth of Orchid Fruits with their Internal Development. Bulletin of the Torrey Botanical Club 69, 353.

    Duncan, R.E., and Curtis, J.T. (1943). Growth of Fruits in Cattleya and Allied Genera in the Orchidaceae. Bulletin of the Torrey Botanical Club 70, 104.

    Fu, M., Kang, H.K., Son, S.H., Kim, S.K., and Nam, K.H. (2014). A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant Cell Physiol 55, 1892-1904.

    Gu, C., Guo, Z.H., Hao, P.P., Wang, G.M., Jin, Z.M., and Zhang, S.L. (2017). Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58, 6.

    Hsiao, Y.-Y., Fu, C.-H., Ho, S.-Y., Li, C.-I., Chen, Y.-Y., Wu, W.-L., Wang, J.-S., Zhang, D.-Y., Hu, W.-Q., Yu, X., Sun, W.-H., Zhou, Z., Liu, K.-W., Huang, L., Lan, S.-R., Chen, H.-H., Wu, W.-S., Liu, Z.-J., and Tsai, W.-C. (2021). OrchidBase 4.0: a database for orchid genomics and molecular biology. BMC Plant Biology 21.

    Hu, Y.X., Wang, Y.H., Liu, X.F., and Li, J.Y. (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research 14, 8-15.

    Israel, H.W., and Sagawa, Y. (1964). Post-Pollination Ovule Development inDendrobiumOrchids. II. Fine Structure of the Nucellar and Archesporial Phases. Caryologia 17, 301-316.
    Lata, C., and Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62, 4731-4748.

    Li, X.-J., Li, M., Zhou, Y., Hu, S., Hu, R., Chen, Y., and Li, X.-B. (2015). Overexpression of Cotton RAV1 Gene in Arabidopsis Confers Transgenic Plants High Salinity and Drought Sensitivity. PLOS ONE 10, e0118056.

    Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199, 639-649.

    Lipińska, M.M., Archila, F.L., Haliński, Ł.P., Łuszczek, D., Szlachetko, D.L., and Kowalkowska, A.K. (2022). Ornithophily in the subtribe Maxillariinae (Orchidaceae) proven with a case study of Ornithidium fulgens in Guatemala. Scientific Reports 12.

    Liu, J., Deng, Z., Liang, C., Sun, H., Li, D., Song, J., Zhang, S., and Wang, R. (2021). Genome-Wide Analysis of RAV Transcription Factors and Functional Characterization of Anthocyanin-Biosynthesis-Related RAV Genes in Pear. International Journal of Molecular Sciences 22, 5567.

    Marín-González, E., Matías-Hernández, L., Aguilar-Jaramillo, A.E., Lee, J.H., Ahn, J.H., Suárez-López, P., and Pelaz, S. (2015). SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. Plant Physiol 169, 1214-1224.

    Matías-Hernández, L., Aguilar-Jaramillo, A.E., Marín-González, E., Suárez-López, P., and Pelaz, S. (2014). RAV genes: regulation of floral induction and beyond. Ann Bot 114, 1459-1470.

    Mittal, A., Gampala, S.S.L., Ritchie, G.L., Payton, P., Burke, J.J., and Rock, C.D. (2014). Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnology Journal 12, 578-589.

    Moreno-Cortés, A., Hernández-Verdeja, T., Sánchez-Jiménez, P., González-Melendi, P., Aragoncillo, C., and Allona, I. (2012). CsRAV1 induces sylleptic branching in hybrid poplar. New Phytol 194, 83-90.

    Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140, 411-432.

    Osnato, M., Castillejo, C., Matías-Hernández, L., and Pelaz, S. (2012). TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3, 808.

    Osnato, M., Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Kater, M.M., and Pelaz, S. (2020). Genes of the RAV Family Control Heading Date and Carpel Development in Rice. Plant Physiol 183, 1663-1680.

    Osnato, M., Cereijo, U., Sala, J., Matías‐Hernández, L., Aguilar‐Jaramillo, A.E., Rodríguez‐Goberna, M.R., Riechmann, J.L., Rodríguez‐Concepción, M., and Pelaz, S. (2021). The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photo‐protection in Arabidopsis. The Plant Journal 105, 7-21.

    Peakall, R. (2007). Speciation in the Orchidaceae: confronting the challenges. Mol Ecol 16, 2834-2837.
    Peng, Z., Wang, M., Zhang, L., Jiang, Y., Zhao, C., Shahid, M.Q., Bai, Y., Hao, J., Peng, J., Gao, Y., Su, W., and Yang, X. (2021). EjRAV1/2 Delay Flowering Through Transcriptional Repression of EjFTs and EjSOC1s in Loquat. Front Plant Sci 12, 816086.

    Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290, 998-1009.

    Wang, P., Yan, Y., Bai, Y., Dong, Y., Wei, Y., Zeng, H., and Shi, H. (2021). Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Reports 37, 110119.

    Wang, S.L., Viswanath, K.K., Tong, C.G., An, H.R., Jang, S., and Chen, F.C. (2019). Floral Induction and Flower Development of Orchids. Front Plant Sci 10, 1258.

    Woo, H.R., Kim, J.H., Kim, J., Kim, J., Lee, U., Song, I.J., Kim, J.H., Lee, H.Y., Nam, H.G., and Lim, P.O. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61, 3947-3957.

    Yu, H., and Goh, C.J. (2001). Molecular genetics of reproductive biology in orchids. Plant Physiol 127, 1390-1393.

    Zhang, X.S., and O'Neill, S.D. (1993). Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination. Plant Cell 5, 403-418.

    Zhang, Z., Shi, Y., Ma, Y., Yang, X., Yin, X., Zhang, Y., Xiao, Y., Liu, W., Li, Y., Li, S., Liu, X., Grierson, D., Allan, A.C., Jiang, G., and Chen, K. (2020). The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal 18, 2267-2279.

    Zhao, L., Luo, Q., Yang, C., Han, Y., and Li, W. (2008). A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227, 1389-1399.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE