簡易檢索 / 詳目顯示

研究生: 羅亦旋
Lo, I-Hsuang
論文名稱: 2205雙相不銹鋼在H2SO4/HCl混酸水溶液中之選擇性溶解及腐蝕疲勞行為研究
Selective dissolution and corrosion fatigue behaviors of 2205 duplex stainless steel in H2SO4/HCl solution
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 156
中文關鍵詞: 選擇性溶解萌芽
外文關鍵詞: Selective dissolurion, Initiation
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究的目的在探討2205雙相不銹鋼在硫酸/鹽酸混酸水溶液中之選擇性溶解現象,以及其對2205雙相不銹鋼之腐蝕疲勞裂紋萌芽行為的影響。由於雙相不銹鋼兩相的化學組成及結晶構造的不同,使得兩相在環境中的抗腐蝕能力及機械性質亦不盡相同。經動電位極化曲線量測及表面形貌分析結果可發現,2205雙相不銹鋼在硫酸/鹽酸混酸水溶液中會發生選擇性溶解現象;並且該現象會影響2205雙相不銹鋼在不同荷重頻率之腐蝕疲勞行為。

    2205雙相不銹鋼在硫酸/鹽酸之混酸水溶液中經動電位極化曲線測試後發現,活性-鈍態轉換區是由兩個明顯且分離的活化峰所組成。經定電位蝕刻及表面形貌觀察後得知電位較低的活化峰主要為肥粒鐵相發生選擇性溶解,而較高的活化峰則為沃斯田鐵相發生選擇性溶解。此外,當硫酸及鹽酸的成分於0.25 M~2 M之間變動時,上述兩活化峰的峰值電位及最大電流密度值亦會隨之變動。但是當鹽酸濃度高於1.2 M時,兩活化峰之間的鑑別度則隨之下降。另外,兩相相界間因化學成分差異而引起的電位差異,會導致伽凡尼效應而造成晶界附近肥粒鐵相的加速腐蝕。

    在發生選擇性溶解以及反覆施力的條件下,2205雙相不銹鋼表面發生優先腐蝕之組成相所形成的應力集中位置會因選擇性溶解作用而被消除,並導致腐蝕疲勞裂縫萌芽於腐蝕速率較慢的組成相。實驗結果發現,於開路電位及肥粒鐵相發生選擇性溶解之電位下,腐蝕疲勞裂縫主要萌芽於溶解速率較慢之沃斯田鐵相;於沃斯田鐵相發生選擇性溶解的電位下,腐蝕疲勞裂縫則萌芽於肥粒鐵相。

    在選擇性溶解的條件下,荷重頻率對於雙相不銹鋼之腐蝕疲勞行為呈現複雜的效應。在較高的荷重頻率下,選擇性溶解可消除應力集中位置(或裂縫萌芽位置),致使腐蝕疲勞裂縫不會萌芽於凹下之相,穿晶破裂是主要疲勞裂縫的成長模式。在較低的荷重頻率下,於肥粒鐵相發生選擇性溶解時,疲勞裂縫也可在肥粒鐵/沃斯田鐵相界間萌芽並傳遞。至於在低荷重頻率及沃斯田鐵相發生選擇性溶解之電位下,視選擇性腐蝕之程度不同,疲勞裂縫可以在肥粒鐵或沃斯田鐵相萌芽,應力集中效應是關鍵因素;在沃斯田鐵相發生選擇性溶解的條件下,裂縫大致以穿晶模式傳遞。在肥粒鐵或沃斯田鐵相發生選擇性溶解的電位下,初始穿晶破斷面會因選擇性溶解而呈現沿晶腐蝕的特徵。

    Abstract
    The purpose of this study was to investigate the selective dissolution and corrosion fatigue behaviors of 2205 duplex stainless steel (DSS) in H2SO4/HCl mixed acid solution. Due to the differences in chemical composition and crystalline structure between a and r phases, the corrosion resistance and mechanical properties were dissimilar. Potentiodynamic polarization measurement and surface morphology analysis show that selective dissolution of one of the constituent phases of 2205 DSS could occur at certain characteristic potentials in H2SO4/HCl solution. Furthermore, selective dissolution would affect the corrosion fatigue behavior of 2205 DSS at various loading frequencies.

    Potentiodynamic polarization measurement indicated that there were two distinctly separated anodic peaks appeared in the active-to-passive transition region of 2205 DSS in H2SO4/HCl solution. After potentiostatic etching and surface morphology analysis, the anodic peak appeared at lower potential was associated with the preferential dissolution of a phase while that for r phase at a higher anodic peak potential. In the solutions with the concentration ranging from 0.25 to 2 M for H2SO4 and HCl, the anodic peak potential and the corresponding current density for selective dissolution of each phase were greatly influenced by the change of electrolyte concentration. However, the evolution of separate anodic peaks became less distinguishable when the concentrations of HCl exceeded 1.2 M. At open circuit potential (OCP), galvanic corrosion resulting from the potential difference of the constituent phases caused the enhanced corrosion of ferrite at the ferrite/austenite phase boundary.

    Under selective dissolution and cyclic loading condition, stress concentration sites formed in the phase preferentially corroded, which induced by the intrusion/extrusion fatigue mechanism, would be eliminated by selective dissolution. Therefore, corrosion fatigue crack was prone to initiate in the phase with lower dissolution rate. At OCP and at the potential where a phase selectively dissolved, corrosion fatigue crack initiated in r phase. On the contrary, corrosion fatigue crack initiated in a phase at an applied potential at which r phase dissolved preferentially.

    The effect of loading frequency on corrosion fatigue behavior of 2205 DSS was complicated under selective dissolution condition. At higher loading frequency, selective dissolution would eliminate stress concentration sites (or fatigue crack initiation site). Therefore, corrosion fatigue crack would not initiate in the concave phase. The cracks mainly propagated transgranularly. At lower loading frequency, corrosion fatigue crack could also initiate and propagate along a/r boundary at potential where a phase selectively dissolved. At the potential where r phase selectively dissolved and at a lower loading frequency, corrosion fatigue crack initiated and propagated transgranularly in either a or r phase depending on the extent of selective dissolution of r phase. The intensity of stress concentration developed was the main factor affecting the corrosion fatigue crack initiated in r phase or not. The initially transgranular mode of fracture surface became faceted as the crack continued to grow. This was attributed to the selective dissolution of either a or r phase under controlled potential condition.

    總目錄 摘要 I Abstract III 誌謝 VI 總目錄 VIII Tables List XI 表目錄 XII Figures List XIII 圖目錄 XXII 第一章 緒論 1 第二章 文獻回顧 4 2-1 雙相不銹鋼之選擇性溶解 4 2-2 環境誘發破裂 7 2-2-1空氣中之裂紋萌芽 7 2-2-2環境誘發裂紋萌芽 9 2-3 荷重頻率對破裂行為之影響 15 2-4 氮元素對破裂行為之影響 16 第三章 實驗方法與步驟 29 3-1 材料 29 3-2 微硬度分析 31 3-3 電化學性質分析 32 3-3-1動電位極化試驗 32 3-3-2定電位極化試驗 33 3-4 疲勞行為分析 33 3-4-1疲勞試驗 34 3-4-2腐蝕疲勞試驗 34 3-4-3混酸環境對腐蝕疲勞萌芽之影響評估 35 第四章 結果與討論 40 4-1 H2SO4/HCl對雙相不銹鋼電化學之影響 40 4-2 H2SO4/HCl濃度變化選擇性溶解行為之影響 46 4-3 選擇性溶解現象對2205雙相不銹鋼腐蝕疲勞裂紋萌芽之影響 56 4-4荷重頻率對2205雙相不銹鋼在選擇性溶解狀態下之腐蝕疲勞裂紋萌芽之影響 74 4-5選擇性溶解及荷重頻率對2205雙相不銹鋼裂紋成長之影響 85 4-5-1開路電位下、荷重頻率對腐蝕疲勞裂紋行為影響 87 4-5-2外加-300 mVSCE電位下、荷重頻率對腐蝕疲勞裂紋行為影響 92 4-5-3外加-240 mVSCE電位下、荷重頻率對腐蝕疲勞裂紋行為影響 95 第五章 綜合討論 130 5-1 溶液成分對選擇性溶解現象之影響 130 5-2 選擇性溶解對腐蝕疲勞裂紋萌芽之影響 131 5-3 荷重頻率對腐蝕疲勞裂紋萌芽之影響 133 5-3-1開路電位下、荷重頻率對腐蝕疲勞裂紋行為影響 134 5-3-2外加-300 mVSCE電位下、荷重頻率對腐蝕疲勞裂紋行為影響 135 5-3-3外加-240 mVSCE電位下、荷重頻率對腐蝕疲勞裂紋行為影響 135 第六章 結論 142 參考文獻 146

    1. A.J. Sedriks, “Effects of alloy composition and microstructure on the passivity of stainless steels”, Corrosion, 42 (1986) 367.
    2. A. Gigada, T. Pasfore, P. Pedeferri and B. Vicentini, “The sulfide stress corrosion cracking of high alloy stainless steels for oil and natural gas wells”, Corros. Sci. 27 (1987) 1213.
    3. L.H. Wolfe, C.C. Burnette and M.W. Joosten, “Hydrogen embrittlement of cathodically protected subsea bolting alloys”, Mater. Perform. 32 (1993) 14.
    4. A.A. El-Yazgi and D. Hardie, “The embrittlement of a duplex stainless steel by hydrogen in a variety of environments”, Corros. Sci. 38 (1996) 735.
    5. R. Francis, G. Byrne and G.R. Warburton, “Effects of cathodic protection on duplex stainless steels in seawater”, Corrosion 53 (1997) 234.
    6. T.G. Gooch, in “Fracture developments of metals and ceramic”, eds. by J.A. Charles, G.W. Greenwood and G.C. Smith, The Institute of Materials (1992) 229.
    7. M.O. Speidel, “Stress corrosion cracking of stainless steels in NaCl solutions”, Metall. Trans. A 12A (1981) 779.
    8. J.-O. Nilsson, “Super duplex stainless steels”, Mater. Sci. Techn. 8 (1992) 685.
    9. K. Ravindranath and S.N. Mailhotra, “The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel “, Corros. Sci. 37 (1995) 121.
    10. H. Eriksson and S. Bernhadrsson, “The applicability of duplex stainless steels in sour environments”, Corrosion 47 (1991) 719.
    11. H. Krebs, in: “Stainless Steel World”, March (1996) 24.
    12. S. Shimodaira, M. Takano, Y Takizawa and H. Kamide, in “Stress Croosion Cracking and Hydrogen Embrittlement of Iron Based Alloy”, ed. by R.W. Staehle et al., Unieux-Firminy, France, 12-18 June, 1973, NACE-5 (1977) 1007.
    13. Y.H. Yau and M.A. Streicher, “Galvanic corrosion of duplex FeCr-10%Ni alloys in reducing acids”, Corrosion 43 (1987) 366.
    14. X.F. Yang and J.E. Castle, “Using in situ AFM to investigate corrosion and passivation of duplex stainless steels”, Surf. Interface Anal. 33 (2002) 894.
    15. J.H. Potgieter, P. Ellis and A. Van Bennekom, “Investigation of the active dissolution behavior of a 22% chromium duplex stainless steel with small ruthenium additions in sulohuric acid”, ISIJ International 35 (1995) 197.
    16. J.J. Dundas and A.P. Bond, “Corrosion resistance of stainless steels in seawater”, Mater. Perform. Oct. (1985) 54.
    17. N. Sridhar and J. Kolts, “Effect of nitrogen on the selective dissolution of a duplex stainless steel”, Corrosion 43 (1987) 646.
    18. A.A. El-Yazgi and D. Hardie, “Stress corrosion cracking of duplex and super duplex stainless stells in sour environments”, Corros. Sci. 40 (1998) 909.
    19. A.J. Aldykiewicz Jr. and H.S. Isaacs, “Dissolution characteristics of duplex stainless steels in acidic environments”, Corros. Sci. 40 (1998) 1627.
    20. G. Herbsleb and R.K. Poepperling, “Corrosion properties of austenitic-ferritic duplex stainless steel AF 22 in chloride and sulfide containing environments”, Corrosion 36 (1982) 611.
    21. E.Symniotis, “Galvanic effects on the active dissolution of duplex stainless steels”, Corrosion 46 (1990) 2.
    22. E.Symniotis, “Dissolution mechanism of duplex stainless steels in the active-to-passive transition range and the role of microstructure”, Corrosion 51 (1995) 571.
    23. M. Femenia, J. Pan and C. Leygraf, “In situ local dissolution of duplex stainless steels in 1 M H2SO4 + 1 M NaCl by electrochemical scanning tunneling microscopy”, J. Electrochem. Soc. 149 (2002) B187.
    24. M. Femenia, J. Pan, C. Leygraf and P. Lukkonen, “In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunneling microscopy”, Corros. Sci. 43 (2001) 1939.
    25. W.T. Tsai and M.S. Chen, “Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution”, Corros. Sci. 42 (2000) 545.
    26. C.M. Tseng and W.T. Tsai, “Environmentally assisted cracking behavior of single and dual phase stainless steels in hot chloride solution”, Mater. Chem. Phys. 84 (2004) 162.
    27. W.T. Tsai, K.M. Tsai and C. Lin, “Selective corrosion in duplex stainless steel”, Corrosion/2003 NACE (2003) paper #03398.
    28. I.H. Lo, Y. Fu, C.J. Lin and W.T. Tsai, “Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainless steel in H2SO4/HCl solutions”, Corros. Sci. 48 (2006) 696.
    29. W.T. Tsai and J.R. Chen, “Galvanic corrosion between the constituent phases in duplex stainless steel”, Corros. Sci. (2007), doi:10.1016/j.corsci.2007.03.035.
    30. J. Johansson and M. Odén, “Load sharing between austenite and ferrite in a duplex stainless steel during cyclic loading”, Metal. Mater. Trans. A 31 (2000) 1557.
    31. M. Nyström and B. Karlsson, “Fatigue of duplex stainless steel influence of discontinuous, spinodally decomposed ferrite”, Mater. Sci. Eng. A 215 (1996) 26.
    32. L. Llanes, A. Mateo, P. Violan, J. Mendez and M. Anglada, “On the high cycle fatigue behavior of duplex stainless steels: Influence of thermal aging”, Mater. Sci. Eng. A 234-236 (1997) 850.
    33. L. Llanes, A. Mateo, P. Villechaise, J. Mendez and M. Anglada, “Effect of testing atmosphere (air/in vacuo) on low cycle fatigue characteristics of a duplex stainless steel”, Int. J. Fatigue 21 (1999) S119.
    34. I.H. Lo and Wen-Ta Tsai, “Effect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel”, Corros. Sci. 49 (2007) 1847.
    35. K. Makhlouf, H. Sidhom, I. Triguia and C. Braham, “Corrosion fatigue crack propagation of a duplex stainless steel X6 Cr Ni Mo Cu 25-6 in air and in artificial sea water”, Int. J. Fatigue 25 (2003) 167.
    36. A. Comer and L. Looney, “Corrosion and fatigue characteristics of positively polarized Zeron 100 base & weld metal in synthetic seawater”, Int. J. Fatigue 28 (2006) 826.
    37. T. Magnin and J.M. Lardon, “Cyclic deformation mechanisms of a two-phase stainless steel in various environmental conditions”, Mater. Sci. Eng. A 104 (1988) 21.
    38. T. Misawa, “Effects of cathodic protection potential on corrosion fatigue crack growth for a duplex stainless steel in synthetic sea water”, Corrosion Engineering 38 (1989) 315.
    39. T.J. Marrow and J.E. King, “Microstructural and environmental effects on fatigue crack propagation in duplex stainless steels”, Fatigue Fract. Engng. Mater. Struc. 17 (1994) 761.
    40. A. Laitinen and H. Hänninen, “Corrosion fatigue resistance of powder metallurgy and forged duplex stainless steels”, Mater. Sci. Techn. 12 (1996) 1064.
    41. A. Laitinen and H. Hänninen, “Effect of non-metallic inclusions on corrosion fatigue resistance of p/m duplex stainless steels”, Fatigue Fract. Eng. Mater. Struc. 19 (1996) 1045.
    42. S.L. Chou and W.T. Tsai, “Hydrogen embrittlement of duplex stainless steel in concentrated sodium chloride solution”, Mater. Chem. Phys. 60 (1999) 137.
    43. S.L. Chou and W.T. Tsai, “Effect of grain size on the hydrogen-assisted cracking in duplex stainless steels”, Mater. Sci. Eng. A 270 (1999) 219.
    44. 周賢亮, “雙相不銹鋼於高濃度氯化鈉溶液中之鈍化行為及破裂特性研究”, 博士論文, 國立成功大學材料科學及工程學系, 1999.
    45. A. Laitinen and H. Hänninen, “Chloride-induced stress corrosion cracking of powder metallurgy duplex stainless steels”, Corrosion 52 (1996) 295.
    46. W.T. Tsai and S.L. Chou, “Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution”, Corros. Sci. 42 (2000) 1741.
    47. 曾傳銘, “雙相不銹鋼之應力腐蝕破裂及腐蝕疲勞裂縫生長行為研究”, 博士論文, 國立成功大學材料科學及工程學系, 2004.
    48. S. Bernhardsson, J. Oredsson and C. Mårtenson, in: “Duplex Stainless Steels”, ed. by R.A. Lula, ASM, St. Louis, Missouri, 1982, p.267.
    49. P. Kangas and J.M. Nicholls, “Chloride-induced stress stress corrosion cracking of duplex stainless steels. Models, test methods and experience”, Materials and Corrosion 46 (1995) 354.
    50. M. Barteri, F. Mancia, A. Tamba and R. Bruno,“ Microstructure study and corrosion performance of duplex and superaustenitic steels in sour well environment”, Corrosion 43 (1987) 518.
    51. C. Chauvot and M. Sester, “Fatigue crack initiation and crystallograohic crack growth in an sustentic stainless steel”, Computational Materials Science 19 (2000) 87.
    52. P.J. Singh, B Guha and D.R.G. Achar, “Fatigue tests and estimation of crack initiation and propagation lives in AISI 304L butt-welds with reinforcement intact”, Engineering Failure Analysis 10 (2003) 383.
    53. P. Collins and D.J. Duquette, “Corrosion fatigue behavior of a duplex aluminum bronze alloy”, Corrosion 34 (1978) 119.
    54. D.F. Neal and P.A. Blenkinsop, “Internal failure origins in - titanium alloys”, Acta Metall. 24 (1976) 59.
    55. A.N. Stroh, “A theory of the fracture of metals”, Adv. Phys. 6 (1957) 418.
    56. S.G. Ivanova, R.R. Biederman and R.D. Sisson Jr., “Investagation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue”, J. Mater. Eng. Perform. 11 (2002) 226.
    57. K. Nagai, O. Umezawa, T. Yuri and K. Ishikawa, “Internal crack initiation in high cycle fatigue at cryogenic temperatures”, Eng. Fract. Mech. 40 (1991) 957.
    58. E.R. de los Rios, A. Walley, M.T. Milan and G. Hammersley, “Fatigue crack initiation and propagation on shot-peened surfaces in A316 stainless steel”, Int. J. Fatigue 17 (1995) 493.
    59. B.S. Rho, H.U. Hong and S.W. Nam, “The fatigue crack initiation at the interface between matrix and -ferrite in 304L stainless steel”, Scripta Materialia 39 (1998) 1407.
    60. B.S. Rho, H.U. Hong and S.W. Nam, “The effect of -ferrite on fatigue cracks in 304L steels”, Int. J. Fatigue 22 (2000) 683.
    61. J.M. Lee and S.W. Nam, “Effect of crack initiation mode on low cycle fatigue life of type 304 stainless steel with surface roughness”, Mater. Lett. 10 (1990) 223.
    62. H.U. Hong, B.S. Rho and S.W. Nam, “A study on the crack initiation and growth from -ferrite/ phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels”, Int. J. Fatigue 24 (2002) 1063.
    63. A. Heinz and P. Neumann, “Crack initiation during high cycle fatigue of an austenitic steel”, Acta Metall. Mater. 38 (1990) 1933.
    64. J. Xie, A.T. Alpas and D.O. Northwood, “A mechanism for the crack initiation of corrosion fatigue of type 316L stainless steel in Hank’s solution”, Mater. Charact. 48 (2002) 271.
    65. H.M. Shalaby, J.A. Begley and D.D. Macdonald, “Phenomenological aspects of fatigue crack initiation and propagation in type 403 stainless steel in simulated steam cycle environments”, Corrosion 52 (1996) 262.
    66. M. Puiggali, S. Rousserie and M. Touzet, “Fatigue crack initiation on low-carbon steel pipes in a near-neutral-pH environment under potential control conditions”, Corrosion 58 (2002) 961.
    67. G.S. Chen, K.-C. Wan, M. Gao, R.P. Wei and T.H. Flournoy, “Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 alumnium alloy”, Mater. Sci. Eng. A (1996) 126.
    68. S.I. Rokhlin, J.-Y. Kim, H. Nagy and B. Zoofan, “Effect of pitting corrosion on fatigue crack initiation and fatigue life”, Eng. Fract. Mech. 62 (1999) 425.
    69. R.A. Cottis and Z. Husain, “Corrosion-fatigue initiation processes in a maraging steel”, Met. Technol. J. 9 (1982) 104.
    70. L.A. James, “Surface-crack aspect ratio development during corrosion-fatigue crack growth in low-alloy steels”, Nucl. Eng. Des. 172 (1997) 61.
    71. A.P. Jivkov, “Evolution of fatigue crack corrosion from surface irregularities”, Theor. Appl. Fract. Mech. 40 (2003) 45.
    72. U.R. Evans, in: “The Corrosion and Oxidation of Metals” Edward Arnold, U.K. (1960).
    73. J.J. Eckenrod and C.W. Kovach, in: C.R. Brinkman, H.W. Garvin (Eds.), Proceedings of the Conference on Properties of Austenitic Satinless Steels and their Weld Metals, ASTM STP 679, Atlanta, GA, 14 November 1977, ASTM, Philadelphia, PA, 1979, p.17.
    74. J.E. Truman, M.J. Coleman and K.R. Pirt, “Note on the influence of nitrogen content on the resistance to pitting corrosion of stainless steels”, Br. Corros. J. 12 (1977) 236.
    75. R.C. Newman and T. Shahrabi, “The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behavior of austenitic stainless steel in hydrochloric acid”, Corros. Sci. 27 (1987) 827.
    76. Y. Nakai and C. Hiwa, “Effects of loading frequency and environment on delamination fatigue crack growth of CFRP”, Int. J. Fatigue 24 (2002) 161.
    77. X. Zheng and R. Wang, “On the corrosion fatigue crack initiation model and experession of metallic notched elements”, Eng. Fract. Mech. 57 (1997) 617.
    78. H. Kaiser, “De-alloying and dissolution induced cracking of the zinc-iron  phase”, Materials and Corrosion 47 (1996) 34.
    79. S.A. Shipilov, “Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions”, Corrosion 54 (1998) 29.
    80. H. Sakamoto, S. Takezono and T. Nakano, “Effect of stress frequency on fatigue crack initiation in titanium”, Eng. Fract. Mech. 30 (1988) 373.
    81. H. Sakamoto and S. Takezono, “Dependence of stress frequency on fatigue crack initiation in orthotropic material”, Eng. Fract. Mech. 36 (1990) 495.
    82. H. Sakamoto, H. Saiki and K. Takano, “Surface crack initiation in pure titanium under various stress frequencies”, Eng. Fract. Mech. 49 (1994) 317.
    83. W. Shen, W.O. Soboyejo and A.B.O. Soboyejo, “An investigation on fatigue and dwell-fatigue crack growth in Ti - 6Al - 2Sn - 4Zr - 2Mo - 0.1Si”, Mech. Mater. 36 (2004) 117.
    84. M.R. Winstone, K.M. Nikbin and G.A. Webster, “Models of failure under creep/fatigue laoding of a nickel-based superalloy”, J. Mater. Sci. 20 (1985) 2471.
    85. J. Zhao, Y. Miyashita and Y. Mutoh, “Fatigue crack growth behavior of 95Pb-5Sn solder under various stress ratios and frequency”, Int. J. Fatigue 22 (2000) 665.
    86. K. Shiozawa, S. Sun and R.L. Eadie, Metal. “Effect of testing frequency on the corrosion fatigue of a squeeze-cast aluminum alloy”, Metallurgical and Materials Transactions A 31 (2000) 1137.
    87. A.D.B. Gingell and J.E. King, “The effect of frequency and microstructure on corrosion fatigue crack propagation in high strength aluminum alloys”, Acta Mater. 45(1997) 3855.
    88. A. Hendry, “Developments in hidh-nitrogen stainless steels”, Wire J. Int. 27 (1994) 140.
    89. J. Foct and N. Akdut, “Cleavage-like fracture of austenite in duplex stainless steel”, Scr. Metall. Mater. 29 (1993) 153.
    90. J.-B. Vogt, J. Foct, C. Regnard, G. Robert and J. Dhers, “Low-temperature fatigue of 316L and 316LN austenitic stainless steels”, Metall. Trans. A 22 (1991) 2385.
    91. C.M. Tseng, H.Y. Liou and W.T. Tsai, “The influence of nitrogen content on corrosion fatigue crack growth behavior of duplex stainless steel”, Mater. Sci. Eng. A 344 (2003) 190.
    92. J. Foct, T. Magnin, P. Pperrot and J. -B. Vogt, in: “Duplex Satinless Steels 91”, ed. by J. Charles and S. Bernhardson, Beaune, Bourgogne, France, vol. 1 (1991) 49.
    93. F.B. Pickling, in: “Stainless Steels 84” ed. by G.L. Dunlop, Chalmers University of Technology, Göteborg, 3-4 September, 1984, The Institute of Metals, London, UK, (1985) 12.
    94. T.H. Courteny, in: “Mechanical Behavior of Materials”, ed. by T.H. Courteny, McGraw-Hill, 2nd edition Ch.1.
    95. P.R. Levey and A. van Bennekom, “A mechanistic study of the effects of nitrogen on the corrosion properties of stainless steels”, Corrosion 51 (1995) 911.
    96. J. Rawers and M. Grujicic, “Effects of metal composition and temperature on the yield strength of nitrogen strengthened stainless steels”, Mater. Sci. Eng. A 207 (1996) 188.
    97. D.K. Wilsdorf and C. Laird, “Disolcation Behavior in Fatigue”, Mater. Sci. Eng. 27 (1977) 137.

    下載圖示 校內:立即公開
    校外:2007-07-18公開
    QR CODE