簡易檢索 / 詳目顯示

研究生: 賴筱姍
Lai, Siao-Shan
論文名稱: 探討食品汙染物三單氯丙二醇藉由粒線體自體吞噬作用誘導之腎臟毒性機制
Study of the food contaminant 3-monochloro-1,2-propanediol-induced renal toxicity mechanism via toxic mitophagy
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: 腎臟損傷粒線體功能喪失粒線體自體吞噬作用
外文關鍵詞: 3-MCPD, renal toxicity, mitochondrial dysfunction, mitophagy
相關次數: 點閱:159下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含有甘油及氯化鈉的食品,經過酸水解或高溫加工產生食品汙染物三單氯丙二醇酯(3-monochloro-1,2-propanediol esters, 3-MCPDE)及二單氯丙二醇酯(2-monochloro-1,2-propanediol esters, 2-MCPDE),經由攝食進入腸胃道再被水解成游離態的3-MCPD及2-MCPD。動物實驗研究顯示3-MCPD會損害腎臟及雄性生殖系統,然而3-MCPD造成毒性之機制並不清楚,並且2-MCPD毒性目前尚未證實。本研究探討3-MCPD及2-MCPD的毒性影響,並利用MIOX-NanoLuc基因轉殖小鼠觀察停止暴露汙染物後,腎臟損傷回復之可能性。大鼠腎臟近曲小管上皮細胞NRK-52E將用以探討3-MCPD是否藉由粒線體功能喪失,啟動粒線體自體吞噬作用(mitophagy)來誘導腎毒性。
    28天亞急毒性動物實驗管餵給予雄性C57BL/6小鼠3-MCPD (1、2.5、5、10、25 mg/kg)和2-MCPD(1、5、10、25、50 mg/kg ),取其血清、尿液檢測腎肝功能生化值,並以H&E染色觀察腦、心、肺、腎、睪丸等器官受損情形。依據上述實驗結果選擇回復性試驗之3-MCPD暴露劑量(5、10、25 mg/kg),馬兜鈴酸一型(aristolochic acid I)作為正向對照組。MIOX-NanoLuc基因轉殖小鼠暴露3-MCPD 28天後再停止管餵28天進行犧牲。每周收集尿液測定生化值變化,利用H&E染色觀察肺、腎組織回復情形。細胞實驗方面,暴露10 mΜ 3-MCPD後檢測粒線體膜電位、外膜動態蛋白及活性氧物質(reactive oxygen species, ROS)程度以判斷粒線體損傷情形,利用西方墨點法、免疫螢光染色等實驗分析粒線體自體吞噬作用機制。
    實驗結果顯示,暴露3-MCPD的小鼠,僅血清中尿酸濃度相較控制組顯著增加。腎臟組織出現腎小管變性及免疫細胞浸潤,嚴重程度隨劑量增加而提高。25 mg/kg 3-MCPD處理後,肺臟發現肺泡腫脹、免疫細胞浸潤情況。然而2-MCPD僅在高劑量組(50 mg/kg)造成腎臟和心臟些微受損,統計結果無顯著差異,肝、腎功能生化值也無劑量效應。由此可推論3-MCPD毒性較2-MCPD高,並且兩者皆會誘導腎臟損傷。回復性試驗結果觀察到最高劑量(25 mg/kg)損傷指標冷光蛋白在第三週表達下降,停止暴露3-MCPD後回升。組織方面,實驗組與28天結果相比,腎臟受損情形降低,具有部分回復效果,肺臟則無受損。細胞結果發現暴露10 mΜ 3-MCPD後粒線體膜動態蛋白DRP1及MFN1表達失衡、ROS增加、粒線體膜電位下降且粒線體自體吞噬作用相關蛋白表達增加,螢光標記出現共定位區域,利用電子顯微鏡也觀察到暴露3-MCPD的組別出現粒線體自體吞噬作用型態。在加入DRP1抑制劑後NRK-52E細胞存活率上升,且粒腺體自體吞噬作用相關蛋白質表達皆下降。利用致弱DRP1基因之細胞顯示共同暴露3-MCPD後細胞凋亡情形降低,表示3-MCPD所誘導之粒線體自體吞噬作用對細胞是毒性機制。
    總體而言,本研究發現3-MCPD毒性較2-MCPD劇烈,且兩物質皆會導致腎臟損傷。3-MCPD可能藉由粒線體功能喪失促使粒線體自體吞噬作用產生並誘導腎臟損傷。若停止暴露3-MCPD則腎臟損傷具有部分回復效果。

    Food contaminants 3-monochloro-1,2-propanediol (3-MCPD) and 2- monochloro-1,3-propanediol (2-MCPD) are produced by high temperature in oil processing. Animals studies have demonstrated that 3-MCPD caused kidney and male reproduction system injury. Mechanistical studies indicated that 3-MCPD can reduce the mitochondrial membrane potential (MMP) and induced apoptosis. However, the toxicity of 2-MCPD has not been confirmed and exact mechanisms of 3-MCPD in nephrotoxicity is still unclear. The aim of this study is to investigate the toxicity effects of 3-MCPD and 2-MCPD, and MIOX mice were used to observe the reversibility of renal damage. We also investigate the mechanisms of 3-MCPD-induced renal toxicity via mitochondrial dysfunction leading to mitophagy pathway by NRK-52E cells. The results showed the kidney damage was increases dose-dependently, as shown by obvious tubule degeneration and infiltration in the kidney in mice after treated by 3-MCPD. Obvious pulmonary edema and infiltration were observed in lungs after high dose treatment. Contrary, there was minor kidney and heart injury in 2-MCPD high-dose treatment group. This suggested that, 3-MCPD is more toxic than 2-MCPD, and the kidney is the most sensitive organ to both. In the recovery study, the renal damage in 3-MCPD treated groups are less severe compared to the 28-day toxicity study, which indicated partial recovery of renal toxicity was observed. The results of in vitro studies showed that mitochondrial membrane dynamic protein expression imbalanced, ROS increased significantly and MMP decreased after 3-MCPD exposure. Mitophagy-related proteins were also increased and we observed mitophagy morphology in NRK-52E cells after 3-MCPD treatment. The proteins were decreased after cotreated with DRP1 inhibitor, Mdivi-1, and 3-MCPD. And the apoptosis level was decreased after 3-MCPD treatment in knockdown DRP1 NRK-52E cells. Overall, we suggested that 3-MCPD may induce renal damage via mitochondrial dysfunction and mitophagy, whereas ceasing exposure to 3-MCPD would lead to partial reversed in renal toxicity.

    致謝Ⅰ 中文摘要Ⅱ 英文摘要Ⅳ 目錄Ⅷ 第一章、序論1 第二章、文獻回顧2 第一節、單氯丙二醇2 1.1 三單氯丙二醇(3-monochloro-1,2-propanediol, 3-MCPD) 2 1.2二單氯丙二醇(2-monochloro-1,3-propanediol, 2-MCPD) 6 第二節、腎臟損傷與細胞死亡8 第三節、粒線功能喪失 (Mitochondrial dysfunction) 8 第四節、程序性細胞死亡(Programmed cell death) 10 (一) 自體吞噬作用(Autophagy) 10 (二) 粒線體自體吞噬作用(Mitophagy) 11 第三章、研究目的13 第四章、材料與方法15 第一節、研究材料15 (一) 細胞株15 (二) 儀器15 (三) 試劑與耗材16 第二節、研究方法及步驟20 (一) 動物實驗20 (二) 細胞實驗24 第五章、研究架構31 第六章、實驗結果35 第一節、食品汙染物3-MCPD及2-MCPD之28天亞急毒性動物模式 35 (一) 3-MCPD誘導之體重及尿液、血清生化值變化 35 (二) 3-MCPD誘導之組織損傷37 (三) 2-MCPD誘導之體重及尿液、血清生化值變化 38 (四) 2-MCPD誘導之組織損傷39 第二節、食品汙染物3-MCPD之回復性動物實驗結果41 (一) 3-MCPD誘導MIOX小鼠之體重及尿液、血清生化值回復性變化41 (二) 3-MCPD誘導MIOX小鼠之組織損傷回復性43 第三節、食品汙染物3-MCPD之細胞模式以探討機制路徑44 (一) 大鼠腎臟近曲小管上皮細胞NRK-52E暴露3-MCPD誘導粒線體功能受損(mitochondrial dysfunction) 45 (二) 大鼠腎臟近曲小管上皮細胞NRK-52E暴露3-MCPD誘導粒線體自體吞噬作用(mitophagy)蛋白表達47 (三) 大鼠腎臟近曲小管上皮細胞NRK-52E暴露3-MCPD誘導粒線體自體吞噬作用(mitophagy)之蛋白共定位、結合情形 48 (四) 大鼠腎臟近曲小管上皮細胞NRK-52E暴露3-MCPD誘導粒線體自體吞噬作用(mitophagy)之細胞型態觀察 50 (五) 大鼠腎臟近曲小管上皮細胞NRK-52E共同暴露3-MCPD及Mdivi-1抑制粒線體自體吞噬作用(mitophagy)蛋白表達 51 (六) 動物暴露3-MCPD誘導粒線體自體吞噬作用(mitophagy)之表達情形53 第七章、討論55 第八章、結論及建議65 第九章、參考文獻67 圖表83 Fig. 1. Body weight and biochemistry values in serum and urine induced by 3-MCPD in C57BL/6 mice. 84 Fig. 2. Histopathological results and injury score of kidney and lung tissue in C57BL/6 mice. 85 Fig. 3. Body weight and biochemistry values in serum and urine induced by 2-MCPD in C57BL/6 mice. 87 Fig. 4. Histopathological results and injury score of heart and kidney tissue in C57BL/6 mice. 89 Fig. 5. Body weight and biochemistry values in serum and urine induced by 3-MCPD in MIOX gene transgenic mice. 91 Fig. 6. Histopathological results and injury score of kidney and heart tissue in MIOX gene transgenic mice. 93 Fig. 7. Mitochondrial dynamics protein, MMP and mitochondrial superoxide expression induced by 3-MCPD treatment in NRK-52E cells. 95 Fig. 8. Western blot analysis of mitophagy pathway induced by 3-MCPD treatment in NRK-52E cells. 96 Fig. 9. Immunofluorescence and immunoprecipitation analysis of mitophagy pathway induced by 3-MCPD treatment in NRK-52E cells. 98 Fig. 10. 3-MCPD treatment induces mitophagy morphology in NRK-52E cells. 99 Fig. 11. Inhibition of Drp1-mediated mitochondrial fission relieves 3-MCPD-induced impairment of toxic mitophagy. 101 Fig. 12. Immunohistochemistry (IHC) results of DRP1 and p-Parkin expression induced by 3-MCPD treatment in C57BL/6 mice and MIOX gene transgenic mice. 102 補充圖表104 SFig. 1. Histopathological results and injury score of others organ tissue treatment with 3-MCPD in C57BL/6 mice. 104 SFig. 2. Histopathological results and injury score of others organ tissue treatment with 2-MCPD in C57BL/6 mice. 105 SFig. 3. Immunohistochemistry (IHC) results of OAT-1 expression induced by 3-MCPD treatment in C57BL/6 mice and MIOX gene transgenic mice. 106

    Anders HJ (2018) Necroptosis in Acute Kidney Injury. Nephron 139:342-348
    Appel K, Abraham K, Eerger-Preiss E, Hansen T, Apel E, Schuchardt S, Vogt C, Bakhiya N, Creutzenberg O, Lampen A (2013) Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats. Toxicokinetics and Metabolism 87 (9):1649-1659. doi:10.1007/s00204-013-1061-1
    Arakawa H, Amezawa N, Katsuyama T, Nakanishi T, Tamai I (2019) Uric acid analogue as a possible xenobiotic marker of uric acid transporter Urat1 in rats. Drug Metabolism and Pharmacokinetics 34:155-158. doi:10.1016/j.dmpk.2018.12.003
    Arpit S, Hannah J, Pallas Y, William B (2019) Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Reports 20: e48395
    Bakhiya N, Abraham K, Gürtler R, Appel K, Lampen A (2011) Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Molecular Nutrition and Food Research 55 (4):509-521. doi:10.1002/mnfr.201000550
    Barocelli E, Corradi A, Mutti A, Petronini P (2011) Comparison between 3-MCPD and its palmitic esters in a 90-day toxicological study. EFSA
    Bhargava P, Schnellmann R (2017) Mitochondrial energetics in the kidney. Nature Reviews Nephrology 13:629-646
    Bhatia D, Choi M (2019) The emerging role of mitophagy in kidney diseases. Life Sciences 1:13-22
    Brooks C, Wei Q, Cho S, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. Journal of Clinical Investigation 119:1275-1285
    Buhrke T, Frenzel F, Kuhlmann J, Lampen A (2014) 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells. Archives of Toxicology 89 (12):2243-2251. doi:10.1007/s00204-014-1395-3
    Buhrke T, Voss L, Briese A, Stephanowitz H, Krause E, Braeuning A, Lampen A (2018) Oxidative inactivation of the endogenous antioxidant protein DJ-1 by the food contaminants 3-MCPD and 2-MCPD. Archives of Toxicology 92 (1):289-299
    Buhrke T, Weisshaar R, Lampen A (2011) Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-MCPD) and its fatty acid esters by human intestinal Caco-2 cells. Archives of Toxicology 85 (10):1201-1208
    Burman J, Pickles S, Wang C, Sekine S, Vargas J, Zhang Z, Youle A, Nezich C, Wu X, Hammer J, Youle R (2017) Mitochondrial fission facilitates the selective mitophagy of protein aggregates
    Journal of Cell Biology 216 (10):3231-3247. doi:10.1083/jcb.201612106
    Chen L (1988) Mitochondrial membrane potential in living cells. Annual Review of Cell and Developmental Biology 4:155-181
    Chiou Y, Jiang S, Ding Y, Cheng Y (2020) Kidney-based in vivo model for drug-induced nephrotoxicity testing. Scientific Reports 10 (1). doi:10.1038/s41598-020-70502-3
    Cho W, Han B, Nam K, Park K, Choi M, Kim S, Jeong J, Jang D (2008) Carcinogenicity study of 3-monochloropropane-1,2-diol in Sprague-Dawley rats. Food and Chemical Toxicology 46:3172-3177
    Chung S, Lai T, Chien C, Yu H (2012) Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney. PLoS ONE 7:e47299
    Cipolat S, Martins dB, O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences 101:15927-15932
    Clark A, Parikh S (2020) Mitochondrial Metabolism in Acute Kidney Injury. Seminars in Nephrology 40 (2):101-113. doi:10.1016/j.semnephrol.2020.01.002
    Collier P, Cromie D, Davies A (1991) Mechanism of formation of chloropropanols present in protein hydrolysates. Journal of the American Oil Chemists' Society 68:785-790
    D'Arcy M (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy Cell Biology International 46 (6):582-592
    Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology 19 (6):349-364
    Ding W, Yin X (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry 393:547-564
    EFSA (2016) Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA. doi:10.2903/j.efsa.2016.4426
    EFSA (2017) Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA
    Eiyama A, Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Current Opinion in Cell Biology 33:95-101
    Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha S, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417 (6887):447-452
    Eura Y, Ishihara N, Yokota S, Mihara K (2003) Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. The Journal of Biochemistry 134:333-344
    Fang E, Hou Y, Palikaras K, Adriaanse B, Kerr J, Yang B, Lautrup S, Hasan-Olive M, Caponio D, Dan X, Rocktäschel P, Croteau D, Akbari M, Greig N, Fladby T, Nilsen H, Cader M, Mattson M, Tavernarakis N, Bohr V (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience 22:401-412
    Fannjiang Y, Cheng W, Lee S, Qi B, Pevsner J, McCaffery J, Hill R, Basañez G, Hardwick J (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes and Development 18:2785-2797
    Feng J, Chen X, Guan B, Li C, Qiu J, Shen J (2018) Inhibition of peroxynitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury. Molecular Neurobiology 55:6369-6386
    Feng J, Mansouripour A, Xi Z, Zhang L, Xu G, Zhou H, Xu H (2021) Nujiangexanthone a inhibits ervical cancer cell proliferation by promoting mitophagy. Molecules 26 (10):2858. doi:10.3390/molecules26102858
    Fernie A, Carrari F, Sweetlove L (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 7 (3):254-261
    Fonseca T, Sánchez-Guerrero Á, Milosevic I, Raimundo N (2019) Mitochondrial fission requires DRP1 but not dynamins. Nature 570 (7761):E34-E42. doi:10.1038/s41586-019-1296-y
    Friedmann Angeli J, Schneider M, Proneth B, Tyurina Y, Tyurin V, Hammond V, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm G, Geissler E, Thomas S, Stockwell B, O'Donnell V, Kagan V, Schick J, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology 16 (12):1180-1191
    Fu W, Zhao Y, Zhang G, Zhang L, Li J, Tang C, Miao H, Ma J, Zhang Q, Wu Y (2007) Occurrence of chloropropanols in soy sauce and other foods in China between 2002 and 2004. Food Additives and Contaminants 24 (8):812-819
    Funk J, Schnellmann R (2012) Persistent disruption of mitochon drial homeostasis after acute kidney injury. American Journal of Physiology-Renal Physiology 302 (7):F853-864
    Gao B, Li Y, Huang G, Yu L (2019) Fatty Acid Esters of 3-Monochloropropanediol: A Review. Annual Review of Food Science and Technology 10:259-284
    Gegg M, Cooper J, Chau K, Rojo M, Schapira A, Taanman J (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics 19 (24):4861-4870
    Geisler S, Holmström K, Skujat D, Fiesel F, Rothfuss O, Kahle P, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology 12:119-131
    Hall A, Burke N, Dongworth R, Hausenloy D (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. British Journal of Pharmacology 171:1890-1906
    Haller S, Pellegrini G, Vermeulen C, Van der Meulen N, Köster U, Bernhardt P, Schibli R, Müller C (2016) Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of (161)Tb-folate and (177)Lu-folate. EJNMMI Research 6 (1):13. doi:10.1186/s13550-016-0171-1
    Hamlet C, Sadd P, Gray D (2004) Generation of monochloropropanediols (MCPDs) in model dough systems. 2. Unleavened doughs. Journal of Agricultural and Food Chemistry 52 (7):2067-2072
    Higgins G, Coughlan M (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? British Journal of Pharmacology 171 (8):1917-1942
    Hosten A (1990) BUN and Creatinine. In: Walker HK HW, Hurst JW (ed) Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edn., Boston: Butterworths, pp 878-874
    Hu Z, Zhang H, Yang S, Wu X, He D, Cao K, Zhang W (2019) Emerging Role of Ferroptosis in Acute Kidney Injury. Oxidative Medicine and Cellular Longevity 2019:8010614
    Hyttinen J, Viiri J, Kaarniranta K, Błasiak J (2018) Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cellular and Molecular Life Sciences 75:2991-3008
    IARC (2013) Some chemical present in industrial and consumer products, food and drinking-water. IARC 101:9-549
    Ji J, Zhu P, Sun C, Sun J, An L, Zhang Y, Sun X (2017) Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells. Journal of Toxicological Sciences 42 (1):43-52. doi:10.2131/jts.42.43
    Jin C, Zhong Y, Han J, Zhu J, Liu Q, Sun D, Xia X, Peng X (2020) Drp1-mediated mitochondrial fission induced autophagy attenuates cell apoptosis caused by 3-chlorpropane-1,2-diol in HEK293 cells. Food and Chemical Toxicology 145:111740. doi:10.1016/j.fct.2020.111740
    Jin S, Youle R (2012) PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science 125 (Pt 4):795-799. doi:10.1242/jcs.093849
    Jokinen M, Lieuallen W, Johnson C, Dunnick J, Nyska A (2005) Characterization of spontaneous and chemically induced cardiac lesions in rodent model systems: the national toxicology program experience. Cardiovascular Toxicology 5 (2):227-244. doi:10.1385/ct:5:2:227
    Jones A, Milton D, Murcott C (1978) The oxidative metabolism of alpha-chlorohydrin in the male rat and the formation of spermatocoeles. Xenobiotica 8:573-582
    Jung S, Jeong H, Yu S (2020) Autophagy as a decisive process for cell death. Experimental and Molecular Medicine volume 52:921-930
    Kalia R, Wang R, Yusuf A, Thomas P, Agard D, Shaw J, Frost A (2018) Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558 (7710):401-405. doi:10.1038/s41586-018-0211-2
    Kamerkar S, Kraus F, Sharpe A, Pucadyil T, Ryan M (2018) Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature Communications 9 (1):5239. doi:10.1038/s41467-018-07543-w
    Kane L, Lazarou M, Fogel A, Li Y, Yamano K, Sarraf S, Banerjee S, Youle R (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. Journal of Cell Biology 205:143-153
    Kaze N, Watanabe Y, Sato H, Murota K, Kotaniguchi M, Yamamoto H, Inui H, Kitamura S (2016) Estimation of the Intestinal Absorption and Metabolism Behaviors of 2- and 3-Monochloropropanediol Esters. Lipids 51 (8):913-922
    Krautwald S, Linkermann A (2014) The fire within: pyroptosis in the kidney. American Journal of Physiology-Renal Physiology 306:F168-F169
    Kubli D, Gustafsson Å (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research 111 (9):1208-1221
    Kuhlmann J (2010) Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. European Journal of Lipid Science and Technology 113 (3):335-344. doi:10.1002/ejlt.201000313
    Kuhlmann J (2011) Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. European Journal of Lipid Science and Technology 113:335-344
    Lee B, Khor S (2015) 3-Chloropropane-1,2-diol (3-MCPD) in Soy Sauce : A Review on the Formation, Reduction, and Detection of This Potential Carcinogen Comprehensive Reviews in Food Science and Food Safety 14 (1):48-66
    Lee B, Park S, Kim Y, Han J, Jeong E, Moon K, Son H (2015) A 28-day oral gavage toxicity study of 3-monochloropropane-1,2-diol (3-MCPD) in CB6F1-non-Tg rasH2 mice. Food and Chemical Toxicology 86:95-103. doi:10.1016/j.fct.2015.09.019
    Li C, Li C, Yu H, Cheng Y, Xie Y, Yao W, Guo Y, Qian H (2021) Chemical food contaminants during food processing: sources and control. Critical Reviews in Food Science and Nutrition 61 (9):1545-1555
    Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, Zhang Z, Qi C, Shen J, Mou S, Gu L, Ni Z (2020) Drp1-regulated PARK2-depen dent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radical Biology and Medicine 152:632-649
    Liang J, Zhang P, Hu X, Zhi L (2015) Elevated serum uric acid after injury correlates with the early acute kidney in severe burns. Burns 41 (8):1724-1731
    Lim J, Kim E, Kim M, Chung S, Shin S, Kim H, Yang C, Kim Y, Chang Y, Park C, Choi B (2012) Age-associated molecular changes in the kidney in aged mice. Oxidative medicine and cellular longevity 2012:171383. doi:10.1155/2012/171383
    Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, Gu L, Lu R, Ni Z (2019a) PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biology 26:101254. doi:10.1016/j.redox.2019.101254
    Lin T, Wu V, Wang C (2019b) Autophagy in Chronic Kidney Diseases. Cells 8 (1)
    Lin X, Qiu B, Ma M, Zhang R, Hsu S, Liu H, Chen J, Gao D, Cui J, Ren Z, Chen R (2020) Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia. Oncogenesis 9 (7):67. doi:10.1038/s41389-020-00251-5
    Liu J, Yang C, Zhang W, Su H, Liu Z, Pan Q, Liu H (2018a) Disturbance of mitochondrial dynamics and mitophagy in sepsis induced acute kidney injury. Life Sciences 235. doi:https://doi.org/10.1016/j.lfs.2019.116828
    Liu M, Gao B, Qin F, Wu P, Shi H, Luo W, Ma A, Jiang Y, Xu X, Yu L (2012) Acute oral toxicity of 3-MCPD mono- and di-palmitic esters in Swiss mice and their cytotoxicity in NRK-52E rat kidney cells. Food and Chemical Toxicology 50 (10):3785-3791
    Liu M, Huang G, Wang T, Sun X, Yu L (2016) 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways. Toxicological Sciences 151 (1):181-192
    Liu M, Liu J, Wu Y, Gao B, Wu P, Shi H, Sun X, Huang H, Wang T, Yu L (2017) Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice. Journal of the Science of Food and Agriculture 97 (3):841-848. doi:10.1002/jsfa.7805
    Liu P, Li C, Huang K, Liu C, Chen H, Lee C, Chiou Y, Chen R (2021) 3-MCPD and glycidol coexposure induces systemic toxicity and synergistic nephrotoxicity via NLRP3 inflammasome activation, ecroptosis, and autophagic cell death. Journal of Hazardous Materials 405 (124241)
    Liu R, Chan D (2015) The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Molecular Biology of the Cell 26:4466-4477
    Liu W, Chen B, Wang Y, Meng C, Huang H, Huang X, Qin J, Mulay S, Anders H, Qiu A, Yang B, Freeman G, Lu H, Lin H, Zheng Z, Lan H, Huang Y, Xia Y (2018b) RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America 115 (7):E1475-E1484
    Lorenz G, Darisipudi M, Anders H (2014) Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrology Dialysis Transplantation 29:41-48
    Lynch B, Bryant D, Hook G, Nestmann E, Munro I (1998) Carcinogenicity of monochloro-1,2-propanediol (alpha-chlorohydrin, 3-MCPD). International Journal of Toxicology 17:47-76
    Martinou J, Youle R (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Developmental Cell 21:92-101
    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier C, Sou Y, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology 189 (2):211-221. doi:10.1083/jcb.200910140
    Miki K (2007) Energy metabolism and sperm function. Society of Reproduction and Fertility supplement 65:309-325
    Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi- osmotic type of mechanism. Nature 191:144-148
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology 27:107-132
    Morris I, Williams L (1980) Some preliminary observations of the nephrotoxicity of the male antifertility drug (+/-)alpha-chlorohydrin. Journal of Pharmacy and Pharmacology 32 (1)
    Mozdy A, Shaw J (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nature Reviews Molecular Cell Biology 4:468-478
    Mukai C, Okuno M (2004) Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biology of Reproduction 71:540-547
    Namba T, Takabatake Y, Kimura T, Takahashi A, Yamamoto T, Matsuda J, Kitamura H, Niimura F, Matsusaka T, Iwatani H, Matsui I, Kaimori J, Kioka H, Isaka Y, Rakugi H (2014) Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. American Society of Nephrology 25 (10):2254-2266
    Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Research 24 (1):9-23
    Olichon A, Emorine L, Descoins E, Pelloquin L, Brichese L, Gas N, Guillou E, Delettre C, Valette A, Hamel C, Ducommun B, Lenaers G, Belenguer P (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523:171-176
    Onami S, Cho Y, Toyoda T, Akagi J, Fujiwara S, Ochiai R, Tsujino K, Nishikawa A, Ogawa K (2015) Orally administered glycidol and its fatty acid esters as well as 3-MCPD fatty acid esters are metabolized to 3-MCPD in the F344 rat. Regulatory Toxicology and Pharmacology 73 (3):726-731
    Ozcagli E, Alpertunga B, Fenga C, Berktas M, Tsitsimpikou C, Wilks M, Tsatsakis Α (2016) Effects of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites on DNA damage and repair under in vitro conditions. Food and Chemical Toxicology 89:1-7
    Palmeira C, Rolo A (2011) Mitochondrial Membrane Potential (ΔΨ) Fluctuations Associated with the Metabolic States of Mitochondria. Methods in Molecular Biology:89-101
    Park H, Chung K, An H, Gim J, Hong J, Woo H, Cho B, Moon C, Yu S (2019) Parkin promotes mitophagic cell death in adult hippocampal neural stem cells following insulin withdrawal. Frontiers in Molecular Neuroscience 12:46
    Peng X, Gan J, Wang Q, Shi Z, Xia X (2016) 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway. Toxicology 372:1-11
    Pieczenik S, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Experimental and Molecular Pathology 83 (1):84-92
    Pudel F, Benecke P, Fehling P, Freudenstein A, Matthäus B, Schwaf A (2011) On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. European Joutnal of Lipid Science and Technology 113:368-373
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB Journal 22 (3):659-661. doi:10.1096/fj.07-9574LSF
    Renata J, Magdalena K, Agnieszka G, Justyna G, Jacek N (2016) 3-MCPD: A Worldwide Problem of Food Chemistry. Critical Reviews in Food Science and Nutrition 56 (14):2268-2277
    Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, Wohrmann T (2009) Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicologic Pathology 37:5S-73S. doi:10.1177/0192623309353423
    Roca-Agujetas V, de Dios C, Lestón L, Marí M, Morales A, Colell A (2019) Recent Insights into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress. Oxidative Medicine and Cellular Longevity 2019:3809308. doi:10.1155/2019/3809308
    Rong S, Park J, Kirsch T, Yagita H, Akiba H, Boenisch O, Haller H, Najafian N, Habicht A (2011) The TIM-1:TIM-4 pathway enhances renal ischemia-reperfusion injury. Journal of the American Society of Nephrology 22:484-495
    Ryter S, Bhatia D, Choi M (2019) Autophagy: a lysosome dependent process with implications in cellular redox homeostasis and human disease. Antioxidants and Redox Signaling 30:138-159
    Schultrich K, Frenzel F, Oberemm A, Buhrke T, Braeuning A, Lampen A (2017) Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat. Archives of Toxicology 91 (9):3145-3155. doi:10.1007/s00204-016-1927-0
    Shi J, Fung G, Deng H, Zhang J, Fiesel F, Springer W, Li X, Luo H (2015) NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Cell Death and Disease 6 (10):e1943
    So A, Thorens B (2010) Uric acid transport and disease. Journal of Clinical Investigation 120 (6):1791e1799
    Stevenson D, Jones A (1984) The action of (R)- and (S)-alpha-chlorohydrin and their metabolites on the metabolism of boar sperm. International Journal of Andrology 7:79-86
    Sun J, Bai S, Bai W, Zou F, Zhang L, Su Z, Zhang Q, Ou S, Huang Y (2013) Toxic mechanisms of 3monochloropropane-1,2-diol on progesterone production in R2C rat Leydig cells. Journal of Agricultural and Food Chemistry 61:9955-9960
    Sun N, Yun J, Liu J, Malide D, Liu C, Rovira I, Holmström K, Fergusson M, Yoo Y, Combs C, Finkel T (2015) Measuring In Vivo Mitophagy. Molecular Cell 60 (4):685-696
    Svejkovská B, Novotný O, Divinová V, Réblová Z, Doležal M (2004) Estersof3-chloropropane-1,2-diol in foodstuffs. Czech Journal of Food Sciences 22:190-196
    Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z, He L, Tan J, Liu Y, Liu H, Sun L, Duan S, Peng Y, Liu F, Yin X, Zhang Z, Dong Z (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14 (5):880-897
    Tang C, He L, Liu J, Dong Z (2015) Mitophagy: basic mechanism and potential role in kidney diseases. Kidney Diseases 1:71-79
    Thomenius M, Freel C, Horn S, Krieser R, Abdelwahid E, Cannon R, Balasundaram S, White K, Kornbluth S (2011) Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death. Cell Death and Differentiation 18:1640-1650
    Velisek J, Davidek J, Hajslova J, Kubelka V, Janicek G, Mankova B (1978) Chlorohydrins in protein hydrolysates. Zeitschrift für Le0bensmittel-Untersuchung und -Forschung 167:241-244
    Wang Y, Tang C, Cai J, Chen G, Zhang D, Zhang Z, Dong Z (2018) PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death and Disease 9:1113
    WeiBhaar R (2011) Fatty acid esters of 3-MCPD : Over view of occurrence and exposure estimates. European Joutnal of Lipid Science and Technology 113:304-308
    Weißhaar R, Perz R (2010) Fatty acid esters of glycidol in refined fats and oils. European Joutnal of Lipid Science and Technology 112:158-165
    Weisburger E, Ulland B, Nam J, Gart J, Weisburger J (1981) Carcinogenicity tests of certain environmental and industrial chemicals. Journal of the National Cancer Institute 67:75-88
    Wenzl T, Lachenmeier D, Gökmen V (2007) Analysis of heat-induced contaminants (acrylamide, chloropropanols and furan) in carbohydrate-rich food. Analytical and Bioanalytical Chemistry 389:119-137
    Wong Y, Muhamad H, Abas F, Lai O, Nyam K, Tan C (2017) Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined,bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chemistry 219:126-130. doi:10.1016/j.foodchem.2016.09.130
    Yang P, Hu J, Liu J, Zhang Y, Gao B, Wang T, Jiang L, Granvogl M, Yu L (2020) Ninety-Day Nephrotoxicity Evaluation of 3-MCPD 1-Monooleate and 1-Monostearate Exposures in Male Sprague Dawley Rats Using Proteomic Analysis. Journal of Agricultural and Food Chemistry 68 (9):2765-2772. doi:10.1021/acs.jafc.0c00281
    Yao N, Wang C, Hu N, Li Y, Liu M, Lei Y, Chen M, Chen L, Chen C, Lan P, Chen W, Chen Z, Fu D, Ye W, Zhang D (2019) Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death and Disease 10:232
    Youle R, Narendra D (2011) Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology 12:9-14
    Zhang Z, Yang P, Gao B, Huang G, Liu M, Yu L (2019) Synthesis of 2-Monochloropanol Fatty Acid Esters and Their Acute Oral Toxicities in Swiss Mice. Journal of Agricultural and Food Chemistry 67 (13):3789-3795. doi:10.1021/acs.jafc.9b01083
    Zhao C, Chen Z, Xu X, An X, Duan S, Huang Z, Zhang C, Wu L, Zhang B, Zhang A, Xing C, Yuan Y (2017) Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury. Experimental Cell Research 350 (2):390-397

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE