| 研究生: |
李夐璘 Li, Shawn-Ling |
|---|---|
| 論文名稱: |
主鏈含孤立二苯乙烯苯發光團及雙極性基團高分子的合成與光電性質 Synthesis and optoelectronic properties of isolated copolymer consisting of luminescent distyrylbenzene derivative and bipolar group. |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 發光二極體 、孤立系統 、雙極性基團 |
| 外文關鍵詞: | PLEDs, isolated bipolar, Bipolar group |
| 相關次數: | 點閱:50 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子發光二極體(Polymer Light Emitting Diode, PLED)利用電激發光的原理,在PLED元件施加一順向偏壓後,電子與電洞分別由陰極與陽極注入,因為外加電場所造成的電位差,使得載子在有機薄膜中移動,進而在發光層中再結合形成電子-電洞對的激子,當此激子釋放能量後回到回基態時,部分能量會以光子的方式放出,使PLED元件發光。為了提高發光效率,必須減少電極與高分子間的能障及平衡電子電洞注入的速率來提高電子與電洞再結合的機率,大部分PLED高分子電洞注入速率大於電子,所以可利用多層結構導入電子傳遞層(Electron Transport Layer, ETL),或是摻混電子傳遞分子,或是利用化學合成改變分子結構,來提升電子注入的能力。
本研究合成主鏈含孤立發光基團及電子傳遞基團的高分子,在結構上以二苯乙烯衍生物為發光基團,並導入同時含電子及電洞傳遞性質的雙極性基團,利用親核性取代反應合成具芳香醚高分子,使其共軛長度受到控制,並提升電子、電洞注入的平衡。所合成的高分子有良好的熱穩定性。利用模式化合物與高分子的比較,螢光光譜皆有能量轉移的現象,使高分子的發光及螢光量子產率皆由發光基團所控制。元件方面,由於孤立系統分子主鏈上是非全共軛的結構,使載子在分子鏈上移動較為困難,且因為LUMO之能階差過大而減少再結合的機率,導致元件的亮度並不高。故將高分子參混進入聚芴中,藉由能量轉移以及階梯式的LUMO能階,大幅的提升了元件的亮度及能力,在參混比例為4 %時,可達到最佳之元件效果為3259 cd/m2及1.08 cd/A,其CIE 1931色度坐標落在(0.21,0.49)。
Polymer light emitting diodes (PLEDs) have attracted much interest in recent years because of their potential application in large-area flat panel displays. However, most LED polymers are p-doped, materials that mobility of holes is usually much greater than that of electrons. Efficient and balanced charges injection transport are essential for high performance PLEDs. Introducing electron- and hole-transporting units in to polymer structure is one of the strategies to achieve balanced charge injection and transport.
In this work, we synthesized an isolated poly(aryl ether) consisting of alternate emitting (distyrylbenzene derivatives) and bipolar groups. The bipolar unit is composed of directly linked electron-transporting aromatic 1,2,4-ttiazole and hole-transporting triphenylamine. These poly(aryl ether) is neadily soluble in common organic solvents and exhibit good thermal stability with Td above 450oC. The emission and the PL quantums yield of the polymers are dominated by the fluorophores(distyrylbenzene derivative) with longer emissive wavelength. The HOMO and LUMO energy level were estimated from their cyclic voltammograms. Lowered LUMO levels confirmed the enhancement of electron affinity by introducing isolated bipolar unit, leading to more balance charge injection transport. Blending the bipolar copolymer with polyfluorene effectively improves the emission efficiency of its electroluminescent device [ITO/PEDOT:PSS/polymer blend/LiF/Ca/Al]. The maximum luminance and maximum luminance efficiency are significantly enhanced to 3259 cd/m2 and 1.08 cd/A from 1161 cd/m2 and 0.33 cd/A (polyfluorene-based divice).
[1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
[2] C. W. Tang, S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[3] 郭昭輝;塑膠資訊雜誌,民國91年10月
[4] D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry, 5th edition, Saunders College Publishing, 1988.
[5] N. J. Turro, Modern Molecular Photochemistry, Mill Valley, University Science Books, California, 1991.
[6] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing, 1997.
[7] 翁文國;工業材料雜誌,第156期,P.75,民國88年12月.
[8] G. Hadziioannou, P. F. van Hutten, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, 1999.
[9] 楊素華;光訊雜誌,第98 期,P.29,2002 年10 月.
[10] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494, 2001.
[11] 陳金鑫,光訊雜誌,第65期,P.12,民86年4月.
[12] 王心心,蔡玲美,張信貞;化工資訊雜誌,P.12,2002年5月.
[13] R. F. Heck, Accounts of Chemical Research, 12, 146 (1979).
[14] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26, 5281 (1993).
[15] R. A. Wessling, J. Polym. Sci., Polym. Symp., 72, 55 (1985).
[16] F. Louwet, D. Vanderzande, J. Gelan, Synth. Met., 52, 125 (1992).
[17] J. L. Bredas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
[18] Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 26, 1188 (1993).
[19] R. G. Sun, Y. Z. Wang, D. K. Wang, Q. B. Zheng, E. M. Kyllo, T. L. Gustafson, A. J. Epstein, Appl. Phys. lett., 76, 634 (2000).
[20] 趙慶勳,郭耀興,段啟聖:化工資訊雜誌,P.18,2002年5月.
[21] Z. K. Chen, H. Meng, Y. H. Lai, W. Huang, Macromolecules, 32, 4351 (1999).
[22] Z. Bao, Z. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
[23] A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Adv. Mater., 9, 1174 (1997).
[24] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
[25] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 1482 (1999).
[26] A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew : Chem. Int. Ed., 37, 402 (1998).
[27] R. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999, p368.
[28] A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry, Wiley & Sons, New York, 1969.
[29] Y. H. Kim, D. C. Shin, H. You, S. K. Kwon, Polymer, 46, 7969 (2005).
[30] F. Wang, J. Luo, J. W. Chen, F. Huang, Y. Cao, Polymer, 46, 8422 (2005).
[31] W. C. Wu, C. L. Liu, W. C. Chen, Polymer, 47, 527 (2006).
[32] Y. Yang, Q. Pei, A. J. Heeger, J Appl Phys; 79, 934 (1996).
[33] U. Scherf, E. J. W. List, Adv Mater., 14, 477 (2002).
[34]U. Lemmer, S. Heun, R. F. Mahrt, U. Sgherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Mullen, H. Bassler, Chem. Phy. Lett., 240, 373 (1995).
[35] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller, D. C. Miller, Macromolecules, 32, 361 (1999).
[36] G. Zeng, W.-L. Yu, S.-J. Chua, Huang, W. Macromolecules, 35, 6907 (2002).
[37] E. J. W. List, R. Guentne, P. S. Freitas, U. Scherf, Adv Mater, 14, 374 (2002).
[38] G. Hughes, M. R. Bryce, J. Mater. Chem., 15, 94 (2005).
[39] P. A. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, J. Mater. Chem., 16, 4556 (2004).
[40] A. Heller, J. Chem. Phy., 40, 2839 (1964).
[41] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
[42] J. L, Hedrick; J. W, Labadie. Macromolecules 1988, 21, 1883-1885
[43] R. ,Kenneth.;C. R. D. , Miller.;J. L. , Hedrick. Macromolecules 1993, 26, 2209-2215.
[44] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994).
[45] 楊豐瑜;化工資訊,第三期,P.18,2002.
[46] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of Organometallic Chemistry, 557, 93 (1998).
[47] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305 (1999)
[48] J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994)。
[49] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
[50] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
[51] Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
[52] R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, B. R. Hsieh, J. Phys. Chem. A, 103, 2394 (1999).
[53] 黃孝文,”主鏈含孤立電子和電洞傳送性發光團之聚芳香醚的合成與光電性質”, 國立成功大學化學工程研究所博士論文,民國90年.
[54] 陳信宏,”主鏈含孤立發光基團及對四聯苯高分子的合成與光電性質”, 國立成功大學化學工程研究所碩士論文,民國90年.
[55] H. M. McConnell, J. Chem. Phys., 35, 508 (1961).
[56] M. D. Todd, A. Nitzan, M. A. Ratner, J. Phys. Chem., 97, 29 (1993).
[57] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, , 36, 6577 (2003).