簡易檢索 / 詳目顯示

研究生: 李夐璘
Li, Shawn-Ling
論文名稱: 主鏈含孤立二苯乙烯苯發光團及雙極性基團高分子的合成與光電性質
Synthesis and optoelectronic properties of isolated copolymer consisting of luminescent distyrylbenzene derivative and bipolar group.
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 發光二極體孤立系統雙極性基團
外文關鍵詞: PLEDs, isolated bipolar, Bipolar group
相關次數: 點閱:50下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(Polymer Light Emitting Diode, PLED)利用電激發光的原理,在PLED元件施加一順向偏壓後,電子與電洞分別由陰極與陽極注入,因為外加電場所造成的電位差,使得載子在有機薄膜中移動,進而在發光層中再結合形成電子-電洞對的激子,當此激子釋放能量後回到回基態時,部分能量會以光子的方式放出,使PLED元件發光。為了提高發光效率,必須減少電極與高分子間的能障及平衡電子電洞注入的速率來提高電子與電洞再結合的機率,大部分PLED高分子電洞注入速率大於電子,所以可利用多層結構導入電子傳遞層(Electron Transport Layer, ETL),或是摻混電子傳遞分子,或是利用化學合成改變分子結構,來提升電子注入的能力。
    本研究合成主鏈含孤立發光基團及電子傳遞基團的高分子,在結構上以二苯乙烯衍生物為發光基團,並導入同時含電子及電洞傳遞性質的雙極性基團,利用親核性取代反應合成具芳香醚高分子,使其共軛長度受到控制,並提升電子、電洞注入的平衡。所合成的高分子有良好的熱穩定性。利用模式化合物與高分子的比較,螢光光譜皆有能量轉移的現象,使高分子的發光及螢光量子產率皆由發光基團所控制。元件方面,由於孤立系統分子主鏈上是非全共軛的結構,使載子在分子鏈上移動較為困難,且因為LUMO之能階差過大而減少再結合的機率,導致元件的亮度並不高。故將高分子參混進入聚芴中,藉由能量轉移以及階梯式的LUMO能階,大幅的提升了元件的亮度及能力,在參混比例為4 %時,可達到最佳之元件效果為3259 cd/m2及1.08 cd/A,其CIE 1931色度坐標落在(0.21,0.49)。

    Polymer light emitting diodes (PLEDs) have attracted much interest in recent years because of their potential application in large-area flat panel displays. However, most LED polymers are p-doped, materials that mobility of holes is usually much greater than that of electrons. Efficient and balanced charges injection transport are essential for high performance PLEDs. Introducing electron- and hole-transporting units in to polymer structure is one of the strategies to achieve balanced charge injection and transport.
    In this work, we synthesized an isolated poly(aryl ether) consisting of alternate emitting (distyrylbenzene derivatives) and bipolar groups. The bipolar unit is composed of directly linked electron-transporting aromatic 1,2,4-ttiazole and hole-transporting triphenylamine. These poly(aryl ether) is neadily soluble in common organic solvents and exhibit good thermal stability with Td above 450oC. The emission and the PL quantums yield of the polymers are dominated by the fluorophores(distyrylbenzene derivative) with longer emissive wavelength. The HOMO and LUMO energy level were estimated from their cyclic voltammograms. Lowered LUMO levels confirmed the enhancement of electron affinity by introducing isolated bipolar unit, leading to more balance charge injection transport. Blending the bipolar copolymer with polyfluorene effectively improves the emission efficiency of its electroluminescent device [ITO/PEDOT:PSS/polymer blend/LiF/Ca/Al]. The maximum luminance and maximum luminance efficiency are significantly enhanced to 3259 cd/m2 and 1.08 cd/A from 1161 cd/m2 and 0.33 cd/A (polyfluorene-based divice).

    中文摘要................................................Ⅰ 英文摘要................................................Ⅱ 誌 謝.................................................Ⅲ 目 錄.................................................Ⅳ 流程目錄................................................Ⅶ 表目錄..................................................Ⅷ 圖目錄..................................................Ⅷ 第一章 緒論..............................................1 1-1 前言................................................1 1-2 理論基礎.............................................3 1-2-1 共軛導電高分子的特性.................................3 1-2-2 螢光原理...........................................4 1-2-3影響螢光強度因素.....................................6 1-3 PLED發光原理與元件結構................................8 1-3-1 發光原理..........................................8 1-3-2 單層元件..........................................9 1-3-3多層元件..........................................10 1-3-4發光效率..........................................13 1-4有機發光二極體未來研究方向.............................14 第二章 文獻回顧.........................................16 2-1 PLED的聚合方法.....................................16 2-2 PLED高分子的設計....................................19 2-2-1 高分子調色技術....................................19 2-2-2 高分子性質的改善...................................22 2-2-3 PLED高分子的系統..................................24 2-3 螢光的能量轉移.......................................25 2-4聚芴(Polyfluorene)..................................26 2-5 研究動機...........................................28 第三章 實驗部份.........................................30 3-1實驗裝置與設備.......................................30 3-2鑑定儀器............................................30 3-3物性及光電特性測量儀器................................31 3-4藥品及材料..........................................34 3-5合成步驟與結果.......................................37 3-5-1雙氟單體9的合成(Scheme 1)..........................37 3-5-2 二苯乙烯單體16的合成(Scheme 2).....................39 3-5-3模式化合物M2的合成(Scheme 3).......................41 3-5-4 高分子P0~P1的合成(Scheme 3)......................41 3-6 聚合反應原理.......................................42 3-6-1有機金屬觸媒......................................42 3-6-2 Heck Reaction..................................43 3-6-3聚芳香醚的合成....................................44 3-7 相對量子產率.......................................45 3-8 循環伏安法.........................................45 3-9 元件製作..........................................47 3-9-1 ITO導電玻璃的切割與清洗...........................47 3-9-2高分子發光膜的製作.................................48 3-9-3 陰極蒸鍍........................................48 3-9-4元件量測...................................................49 第四章 結果與討論.......................................52 4-1 單體結構之鑑定......................................52 4-2高分子結構鑑定.......................................54 4-3 高分子黏度及分子量的測定..............................54 4-4溶解度測試..........................................54 4-5高分子熱性質分析.....................................55 4-5-1熱重分析.........................................55 4-5-2微差式掃描熱卡計...................................56 4-6光學性質...........................................57 4-6-1 UV/Vis 吸收光譜.................................57 4-6-2螢光光譜分析(Photoluminescence Spectra)...........57 4-6-3高分子內的能量轉移.................................58 4-6-4 相對量子產率.....................................58 4-7電化學性質探討......................................59 4-8高分子發光二極體(PLED)的元件特性......................61 4-8-1電流密度(I)-電場(F)-亮度(L)特性....................62 4-8-2 電激發光光譜(Electroluminescence spectra)........63 第五章 結論...........................................64 參考文獻..............................................91 自述.................................................94 流 程 目 錄 (List of Schemes) Scheme 1 Synthesis of Monomers.......................66 Scheme 2 Synthesis of Monomers.......................67 Scheme 3 Synthesis of Model Compounds M2 and Polymer....68 表目錄 (List of Tables) Table 1 Polymerization Results of Polymers ............69 Table 2 Molecular Weights and Thermal properties of P0~P1............69 Table 3 Solubility of P0~P1............................69 Table 4 Optical Properties of the Model Compounds......70 Table 5 Optical Properties of the Polymer..............70 Table 6 Electrochemical properties and band gap of polymers P0~P1..........................71 Table 7 Optoelectronic performance of Electroluminescence Device Properties..................72 圖目錄 (List of Figures) 第一章 緒論 Fig. 1-1 (a)Kodak的Alq3雙層元件[1](b)CDT的PPV單層元件[2]..............2 Fig. 1-2 絕緣體、半導體及導體價帶與傳導帶的能階分佈...........4 Fig. 1-3 各能態中電子自旋的情形...............................5 Fig. 1-4 發光系統的部分能階圖.............................5 Fig. 1-5 光激發光原理圖....................................8 Fig. 1-6 電激發光原理圖..................................9 Fig. 1-7 單層元件結構...................................10 Fig. 1-8 多層元件結構及發光原理...................................11 Fig. 1-9 電洞傳遞層、發光層與電子傳遞層材料.................12 第二章 文獻回顧 Fig. 2-1 控制poly(thiophene)之Eg的五個因素.............19 Fig. 2-2 發光高分子結構與取代基的影響....................20 Fig. 2-3 Karasz與Epstein等人所發表的結構................21 Fig. 2-4 導入電子傳遞基團於側鏈的高分子...................23 Fig. 2-5 導入電子傳遞基團於主鏈的高分子....................24 Fig. 2-6 PLED高分子的四種系統...........................25 Fig. 2-7 具電子傳遞性的發光材料...........................27 Fig. 2-8 Distyrylbenzene的衍生物及其最大發光波長..........28 Fig. 2-9 本研究所使用的雙極性基團.........................29 第三章 實驗部份 Fig. 3-1 Heck 反應機構.................................43 Fig. 3-2 親核性取代反應機構..............................44 Fig. 3-3 循環伏安實驗的三電極系統.........................46 Fig. 3-4 Diagram illustration of the evaporation system........49 Fig. 3-5 元件示意圖.....................................49 第四章 結果與討論 Fig. 4-1 1H-NMR spectrum of compound 4................73 Fig. 4-2 1H-NMR spectrum of compound 8................73 Fig. 4-3 1H-NMR spectrum of compound 9................74 Fig. 4-4 1H-NMR spectrum of compound 12...............74 Fig. 4-5 1H-NMR spectrum of compound 13...............75 Fig. 4-6 1H-NMR spectrum of compound M1...............75 Fig. 4-7 1H-NMR spectrum of compound 15...............76 Fig. 4-8 1H-NMR spectrum of P0........................76 Fig. 4-9 1H-NMR spectrum of P1........................77 Fig. 4-10 1H-NMR spectrum of compound M2..............78 Fig. 4-11 Thermogravimetric curves of P0 and P1 with a heating rate of 20℃/min in nitrogen..................79 Fig. 4-12 Differential scanning calorimetric (DSC) curves of P0 and P1 obtained from the second scan with a heating rate of 20℃/min....................79 Fig. 4-13 UV/Vis absorption spectra of model compound M1、M2 in THF soultion (10-5 M)..............................80 Fig. 4-14 UV/Vis absorption spectra of P0 and P1 in THF soultion(10-5 M)......................................80 Fig. 4-15 UV/Vis absorption spectra of P0 and P1 in films state..................................................81 Fig. 4-16 Photoluminescence spectra of model compound M1、M2 in THF solution (10-5 M)...............................81 Fig. 4-17 Photoluminescence spectra of P0 and P1 in THF solution (10-5 M).......................................82 Fig. 4-18 Photoluminescence spectra of P0~P1 in film state at room temperature....................................82 Fig. 4-19 Photoluminescence spectra of P1 when different concentration in THF solution..........................83 Fig. 4-20 UV/Vis absorption of P0,P1 and photoluminescence spectra of PF(Polyfluorene) in films...................83 Fig. 4-21 Cyclic voltammogram of ferrocene/ferrocenium in 0.1 M n-Bu4NClO4 ; using glassy carbon as working electrode with a scan rate of 100 mV/s............................84 Fig. 4-22 Cyclic voltammogram of the working electrode in 0.1 M n-Bu4ClO4 with a scan rate of 100 mV/s............84 Fig. 4-23 Cyclic voltammogram of M2 in 0.1 M n-Bu4NClO4 with scan rate of 100 mv/s...................................85 Fig. 4-24 Cyclic voltammogram of P0 in 0.1 M n-Bu4NClO4 with scan rate of 100 mv/s...................................85 Fig. 4-25 Cyclic voltammogram of P1 in 0.1 M n-Bu4NClO4 with scan rate of 100 mv/s...................................86 Fig. 4-26 Energy level diagram..........................86 Fig. 4-27 Brightness-voltage characteristics of the device of P0 and P1............................................87 Fig. 4-28 Brightness-voltage characteristics of the EL devices using blend P1 and PF as emitting layer.........87 Fig. 4-29 Current density-voltage characteristics of EL devices using blend P1 and PF as emitting layer.........88 Fig. 4-30 Brightness-voltage characteristics of EL devices using blend P0 and PF as emitting layer.................88 Fig. 4-31 Brightness-voltage characteristics of the EL devices using P0 and P1 doped in PF as emitting layer...89 Fig. 4-32 Luminance-current density characteristics of the EL device using blend P1 and PF as emitting laye........89 Fig. 4-33 The EL spectra of blend device................90 Fig. 4-34 CIE coordinate of polymer, blend device.......90

    [1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [2] C. W. Tang, S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    [3] 郭昭輝;塑膠資訊雜誌,民國91年10月
    [4] D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry, 5th edition, Saunders College Publishing, 1988.
    [5] N. J. Turro, Modern Molecular Photochemistry, Mill Valley, University Science Books, California, 1991.
    [6] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing, 1997.
    [7] 翁文國;工業材料雜誌,第156期,P.75,民國88年12月.
    [8] G. Hadziioannou, P. F. van Hutten, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, 1999.
    [9] 楊素華;光訊雜誌,第98 期,P.29,2002 年10 月.
    [10] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494, 2001.
    [11] 陳金鑫,光訊雜誌,第65期,P.12,民86年4月.
    [12] 王心心,蔡玲美,張信貞;化工資訊雜誌,P.12,2002年5月.
    [13] R. F. Heck, Accounts of Chemical Research, 12, 146 (1979).
    [14] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26, 5281 (1993).
    [15] R. A. Wessling, J. Polym. Sci., Polym. Symp., 72, 55 (1985).
    [16] F. Louwet, D. Vanderzande, J. Gelan, Synth. Met., 52, 125 (1992).
    [17] J. L. Bredas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
    [18] Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 26, 1188 (1993).
    [19] R. G. Sun, Y. Z. Wang, D. K. Wang, Q. B. Zheng, E. M. Kyllo, T. L. Gustafson, A. J. Epstein, Appl. Phys. lett., 76, 634 (2000).
    [20] 趙慶勳,郭耀興,段啟聖:化工資訊雜誌,P.18,2002年5月.
    [21] Z. K. Chen, H. Meng, Y. H. Lai, W. Huang, Macromolecules, 32, 4351 (1999).
    [22] Z. Bao, Z. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
    [23] A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Adv. Mater., 9, 1174 (1997).
    [24] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
    [25] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 1482 (1999).
    [26] A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew : Chem. Int. Ed., 37, 402 (1998).
    [27] R. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999, p368.
    [28] A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry, Wiley & Sons, New York, 1969.
    [29] Y. H. Kim, D. C. Shin, H. You, S. K. Kwon, Polymer, 46, 7969 (2005).
    [30] F. Wang, J. Luo, J. W. Chen, F. Huang, Y. Cao, Polymer, 46, 8422 (2005).
    [31] W. C. Wu, C. L. Liu, W. C. Chen, Polymer, 47, 527 (2006).
    [32] Y. Yang, Q. Pei, A. J. Heeger, J Appl Phys; 79, 934 (1996).
    [33] U. Scherf, E. J. W. List, Adv Mater., 14, 477 (2002).
    [34]U. Lemmer, S. Heun, R. F. Mahrt, U. Sgherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Mullen, H. Bassler, Chem. Phy. Lett., 240, 373 (1995).
    [35] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller, D. C. Miller, Macromolecules, 32, 361 (1999).
    [36] G. Zeng, W.-L. Yu, S.-J. Chua, Huang, W. Macromolecules, 35, 6907 (2002).
    [37] E. J. W. List, R. Guentne, P. S. Freitas, U. Scherf, Adv Mater, 14, 374 (2002).
    [38] G. Hughes, M. R. Bryce, J. Mater. Chem., 15, 94 (2005).
    [39] P. A. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, J. Mater. Chem., 16, 4556 (2004).
    [40] A. Heller, J. Chem. Phy., 40, 2839 (1964).
    [41] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
    [42] J. L, Hedrick; J. W, Labadie. Macromolecules 1988, 21, 1883-1885
    [43] R. ,Kenneth.;C. R. D. , Miller.;J. L. , Hedrick. Macromolecules 1993, 26, 2209-2215.
    [44] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994).
    [45] 楊豐瑜;化工資訊,第三期,P.18,2002.
    [46] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of Organometallic Chemistry, 557, 93 (1998).
    [47] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305 (1999)
    [48] J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994)。
    [49] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
    [50] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    [51] Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
    [52] R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, B. R. Hsieh, J. Phys. Chem. A, 103, 2394 (1999).
    [53] 黃孝文,”主鏈含孤立電子和電洞傳送性發光團之聚芳香醚的合成與光電性質”, 國立成功大學化學工程研究所博士論文,民國90年.
    [54] 陳信宏,”主鏈含孤立發光基團及對四聯苯高分子的合成與光電性質”, 國立成功大學化學工程研究所碩士論文,民國90年.
    [55] H. M. McConnell, J. Chem. Phys., 35, 508 (1961).
    [56] M. D. Todd, A. Nitzan, M. A. Ratner, J. Phys. Chem., 97, 29 (1993).
    [57] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, , 36, 6577 (2003).

    下載圖示 校內:2011-08-26公開
    校外:2012-08-26公開
    QR CODE