簡易檢索 / 詳目顯示

研究生: 阮鄭黃明
Hoang, Minh Nguyen Trinh
論文名稱: 電漿誘導固定二氯苯氧氯酚 (三氯沙) 於聚乙烯表面之抗菌特性
Antibacterial properties of plasma induced Triclosan modified polyethylene surface
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
外文關鍵詞: micro-plasma jet, surface modification, polyethylene, antibacterial action
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A micro-plasma jet device that uses a flowing working gas and a species electrode design to prevent arcing has been developed. It deposits materials at lower temperatures, makes it suitable for a wide range of biomedical applications. For non-thermal low-pressure plasma, the size of the object that can be treated is limited by the size of the vacuum chamber and complicated equipment is necessary. Micro-plasma does not have these limitations. Compared to the other non-thermal atmospheric-pressure plasma, micro-plasma jet allows a lower breakdown voltage and a lower gas temperature, which is beneficial for thermally sensitive substrates. In addition, a homogeneous and uniform discharge can be generated by micro-plasma jet for applications on irregular-shaped surfaces. In this thesis, the application of micro-plasma jet for antibacterial properties to the surface modification of polyethylene (PE) induced triclosan is studied. Argon and argon mixed with a nitrogen micro-plasma jet are used as the working gas under atmospheric pressure. The surface of PE is activated by plasma treatment to produce more hydrophilic groups so that antibacterial agent triclosan can be coated more effectively on the surface (P-TC) and reloaded into plasma (P-TC-P). The surface characteristics are evaluated using static contact angle measurements and X-ray photoelectron spectroscopy analysis. The inhibition zone on agar is used as an in vitro test of antibacterial properties on Escherichia coli. Results confirm that after reload into plasma, more antibacterial agent is immobilized on the surface. The highest increase of antibacterial activity is observed for the sample P-TC-P obtained with a 60-s plasma exposure time. An Ar micro-plasma jet is better than Ar mixed with nitrogen in terms of improving the antibacterial properties of PE.

    Acknowledgement I Abstract II Contents III List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 General introduction 1 1.2 Motive 2 1.3 Literature survey 2 1.3.1 Plasma surface modification 2 1.3.2 Antimicrobial Coating 4 1.3.3 Inhibition zone 5 1.4 Objective 6 Chapter 2 Experimental Techniques 7 2.1 Plasma – Brief introduction and historical background 7 2.1.1 The fourth state od materials 8 2.1.2 Fundamental aspects of plasma physics 10 2.1.3 Types of collisions 12 2.2 Surface Modification Techniques and Fundamental 13 2.2.1 Polymer Surface Modification Techniques 14 2.2.2 Surface Treatments of Polymers 14 2.2.2.1 Plasma treatment 15 2.2.2.2 Other surface treatments 19 2.3 Plasma treatment in medicine application 19 2.4 Surface analytical Techniques 20 2.4.1 Contact angle goniometry 21 2.4.2 X-ray photo electron spectroscopy (XPS) 24 2.4.3 Soxhlet extractor 26 2.4.4 Optical emission spectroscopy 28 Chapter 3 Material and Experimental method 31 3.1 Material 31 3.2 Experiment method 32 3.2.1 Plasma modification and antibacterial agent coating fabrication 32 3.2.2 Surface characterization 35 3.2.2.1 Micro-plasma jet fabrication with optical diagnosis of excited species and plasma jet temperature measurement 35 3.2.2.2 Surface wettability assessment 37 3.2.2.3 Surface chemistry examination 38 3.2.2.4 Bactericide action assessment 39 Chapter 4 Result and Discussion 40 4.1 Plasma measurement 40 4.1.1 Composition of micro-plasma jet 40 4.1.2 Plume Temperature Measurement 44 4.2 Surface wettability assessment 45 4.3 Antibacterial and chemical properties of Polyethylene 47 4.3.1 In vitro antimicrobial test. 47 4.3.2 X-ray Photoelectron Spectroscopy analysis 51 4.4 Mechanism of plasma induced triclosan modified polyethylene surface 55 4.4.1 Mechanism of plasma modified polyethylene surface 55 4.4.2 Mechanism of antibacterial action in cultural medium 56 Conclusion 59 Reference 60

    [1]. Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Ann Rev Microbiol 2005; 59: 113–33.
    [2]. Merchan M, Sedlaříkova J, Sedlařík V, Machovsky M, Svobodova J, Sáha P. Antibacterial polyvinyl chloride/antibiotic films: The effect of solvent on morphology, antibacterial activity and release kinetics. J Appl Polym Sci 2010; 118: 2369-78.
    [3]. Kenawy ER. Biologically active polymers. IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety. J Appl Polym Sci 2001; 82: 1364-74.
    [4]. Rees EN, Tebbs SE, Elliott TSJ. Role of antimicrobial-impregnated polymer and teflon in the prevention of biliary stent blockage. J Hosp Infect 1998; 39: 323-29
    [5]. Junker LM, Hay AG. Effects of triclosan incorporation into ABS plastic on biofilm communities. J Antimicrob Chemother 2004; 53: 989-96.
    [6]. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003; 4: 1457-65.
    [7]. D’Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules 2008; 13: 2069-2106.
    [8] V. Sˇvorcˇı´k, V. Kota´l, P. Slepicˇka, O. Bla´hova´ , M. Sˇpı´rkova´ ,P. Sajdl and V. Hnatowicz, “Modification of surface properties of polyethylene by Ar plasma discharge,” Nuclear Instruments and Methods in Physics Research B 244 (2006) 365–372.
    [9] Wei Zhang, Paul K. Chu, Junhui Ji, Yihe Zhang, Ricky K.Y. Fu and Qing Yan, “Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene,” Journey of Polymer 47 (2006) 931–936.
    [10] Frantiˇsek Bílek, Táˇna Kˇríˇzová and Marián Lehock ´y, “Preparation of active antibacterial LDPE Surface through multistep physicochemical approach: I.Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment,” Colloids and Surfaces B: Biointerfaces 88 (2011) 440–447
    [11] Yasuda, H. Plasma Polymerization, Academic Press Inc.: Orlando, FL, 1985.
    [12] Boenig, H. V. Fundamentals of Plasma Chemistry and Technology, Technomic Publishing Co., Inc.: Lancaster, PA, 1988.
    [13]Chan, C.-M. Polymer surface modification and characterization, Hanser/Gardner Publications, Inc., Cincinnatti, OH, 1994.
    [14] Strobel, M.; Dunatov, C.; Strobel, J. M.; Lyons, C. S.; Perron, S. J.; Morgen, M. C. J. Adhesion Sci. Technol. 1989, 3, 321.
    [15] Shi, M. K.; Selmani, A.; Martinu, L.; Sacher, E.; Wertheimer, M. R.; Yelon, A. in Polymer Surface Modification: Relevance to Adhesion, Mittal, K. L. (Ed.); VSP BV, Utrecht, The Netherlands, 1996.
    [16] Triolo, P. M.; Andrade, J. D. J. Biomed. Mater. Res. 1983, 17, 129.
    [17] Kickuth, R. Plasmatechnik; Prozessvielfalt + Nachhaltigkeit, Roco Druck GmbH: Wolfenbüttel, 2000.
    [18] Boenig, H. V. Fundamentals of Plasma Chemistry and Technology, Technomic Publishing Co., Inc.: Lancaster, PA, 1988.
    [19] Yasuda, H. Plasma Polymerization, Academic Press Inc.: Orlando, FL, 1985.
    [20] Inagaki, N. Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Comapny, Inc., Lancaster, PA, 1996.
    [21] Chan, C. M. Polymer surface modification and characterization, Hanser/Gardner
    [22] Biederman, H.; Osada, Y. Plasma Polymerization Processes, Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992.
    [23] Loeb, L. B. Rev. Mod. Phys. 1940, 12, 87.Publications, Inc., Cincinnatti, OH, 1994. Chan, C. M. Polymer surface modification and characterization, Hanser/Gardner Publications, Inc., Cincinnatti, OH, 1994.
    [24]. Goldston, R. J., Rutherford, P.H. Introduction to plasma physics. 1 st ed. Bristol: Taylor & Francis, 1995. 491 p. ISBN 0750-3032-5-5
    [25]. Chu, P. K., Chen, J. V., Wang, L. P., Huang, N. Plasma-surface modifications of biomaterials. Mater. Sci. Eng., R. 2002, vol. R36, no. 5-6, p. 143-206.
    [26]. Almazán-Almazán, M. C., Paredes, J. I., Pérez-Mendoza, M., Domingo-García, M., López-Garzón, F. J., Martínez-Alonso, A., Tascón, J.M.D. Surface characterization of plasma-modified poly(ethylene terephthalate). J. Colloid Interface Sci. 2006, vol. 293, no. 2, p. 353–363.
    [27]. Mráček, A., Lehocký, M., Smolka, P., Grulich, O., Velebný, V. The allylamine grafting on the plasma pre-treated polyester nonwoven fabric: Preparation, characterization and utilization. Fibers Polym. 2011, vol. 11, no. 8, p. 1106-1110.
    [28]. Fakes, W., Davies, M. C., Brown, A., Newton, J. M. The surface analysis of a plasma modified contact lens surface by SSIMS. Surf. Interface Anal. 2004, vol. 13, no. 4, p. 233-236.
    [29]. Favia, P., Agostino, R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surf. Coat. Technol. 1998, vol. 98, no. 1, p. 1102-1106.
    [30]. Buršíková, V., St’ahel, P., Navrátil, Z., Buršík, J., Janča, J. Surface energy evaluation of plasma treated materials by contact angle measurement. 1 st ed. Brno: Masaryk University, 2004. 70p. ISBN 80-210-3563-3
    [31]. Vesel, A., Mozetič, M., Zalar, A. XPS study of oxygen plasma activated PET. Vacuum 2007, vol. 82, no. 2, p. 248-251.
    [32]. Hollander, J.M., Shirley, D.A. Chemical information from photoelectron and conversion-electron spectroscopy. Annu. Rev. Nucl. Sci. 1970, vol. 20, no. 1, p. 435-466.
    [33] H. P. Schweizer, “Triclosan: a widely used biocide and its link to antibiotics”, FEMS Microbiol Lett, 202 (1–7) (2001), pp. 1–7
    [34] M. Braoudaki, A.C. Hilton, “Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan”, Int J Antimicrob Agents, 25 (2005), pp. 31–37
    [35] A.A. Meyer-Plath, K. Schr.oder, B. Finke, A. Ohl, “Current trends in biomaterial surface functionalization nitrogen-containing plasma assisted processes with enhanced selectivity”, Vacuum 71 (2003) 391–406
    [36] Frantiˇsek Bílek,Táˇna Kˇríˇzová, Marián Lehock, “Preparation of active antibacterial LDPE surface through multistep physicochemical approach: Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment”, Colloids and Surfaces B : Biointerfaces 88 (2011) 440–447
    [37] J.F. Kolb, A.A.H. Mohamed, R.O. Price, R.J. Swanson, A. Bowman, R.L. Chiavarini, M.Stacey, K.H. Schoenbach, Appl. Phys. Lett. 92 (2008) 241501.).
    Website
    [10] Wikipedia.org/wiki/Soxhlet_extractor

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE