簡易檢索 / 詳目顯示

研究生: 白英鈴
Pai, Ying-Ling
論文名稱: 模擬岩石破裂面異向流場之觀測與分析
The Observation and Analysis of the Anisotropic Flow in a Synthetic Rock Fracture
指導教授: 王建力
Wang, Jian-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 89
中文關鍵詞: 異向岩石破裂面
外文關鍵詞: anisotropic, rock fracture
相關次數: 點閱:149下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試對異向性破裂面之水泥石膏混合試體進行流場觀測之研究。利用自行設計之流場觀測系統,針對四個不同形狀之粗糙面,規劃六個不同案例進行實驗。觀察在不同粗糙度及粗糙面形狀下,其流場行為之變異。在本研究設定之實驗條件下發現:
    1. 進水位置的不同會對整個流場行為造成差異,而影響到後來流場之波前流向趨勢。
    2. 當水流由平滑表面進入粗糙表面或由粗糙表面進入平滑表面時,在交界處有先集結再流入(出)粗糙區內的現象。此外,改變粗糙度與流向垂直或平行關係,其流場行為將會明顯不同。
    3. 裂隙流之流速較穩定,受滯性及附著力影響程度顯著。
    4. 渠流狀態下多數流速均有減慢之趨勢,在裂隙流狀態有出現下游流速大於中游流速之情形。
    5. 總體而言,實驗結果與數值分析結果有相同的趨勢。

    A laboratory system is established to observe the anisotropic flow through a synthetic rock fracture. The rock fracture is made of a cement-gypsum mixture. In order to study the effect of anisotropy, four different patterns of rough surfaces are planned. Accordingly, total of six scenarios are investigated. In each scenario, different observations are carried out and the flow conditions are recorded. The experimental results are then compared with the numerical analysis carried out by the program, PDEase2D.
    The findings of this study are as following:
    1. The different water intake position could cause the discrepancy of the flow condition.
    2. The flow appears “condensed” in the interface between the smooth and rough areas. The condition of roughness and the direction of flow have an effect on the overall flow behavior.
    3. The observed flow velocity is laminar according to Reynold’s criteria. The fracture flow is strongly influenced by the viscosity and adhesion.
    4. In most cases of open channel flow, the flow velocity is observed to decrease downstream. In some cases of fracture flow, the flow velocity is observed to increase downstream.
    5. Overall, the numerical simulation of PDEase2D indicates the same trend of the flow pattern as the experimental observation.

    中文摘要 ................................. I 英文摘要 ................................. II 誌謝 ..................................... III 目錄 ..................................... IV 表目錄 ................................... VII 圖目錄 ................................... IX 第一章 緒論 1-1 研究背景與目的 .................... 1 1-2 研究內容 ......................... 2 第二章 前人研究與基本理論 2-1 前人研究 ......................... 4 2-2 基本理論 ......................... 11 第三章 研究設備與實驗方法 3-1 研究設備 ......................... 15 3-1-1 流場測量系統 ..................... 15 3-1-2 攝影系統 ......................... 15 3-2 實驗方法 ......................... 18 3-2-1 實驗規劃 ......................... 18 3-2-2 岩石破裂面粗糙度模擬 ............. 24 3-2-3 觀測表示方法 ..................... 25 3-2-4 實驗步驟 ......................... 25 3-3 實驗流程 ......................... 27 第四章 實驗結果與討論 4-1 流場觀測結果 ..................... 28 4-2 流場波前平均速度計算與分析 ....... 50 4-3 流場流動型態 ..................... 57 4-3-1 理論公式及判斷值 ................. 57 4-3-2 實驗雷諾數計算與結果 ............. 58 第五章 數值分析 5-1 有限元素分析程式PDEase2D ......... 61 5-1-1 PDEase2D求解問題程序與特色 ....... 62 5-1-2 PDEase2D程式架構 ................. 63 5-1-3 數值分析流程 ..................... 64 5-2 案例模擬 ......................... 65 5-3 結果與討論 ....................... 80 第六章 結論與建議 6-1 結論 ............................. 82 6-2 建議 ............................. 84 參考文獻 ................................. 85

    1. Y. W. Tsang, and Witherspoon, P. A., Hydromechanical behavior of adeformable rock fracture subject to normal stress, Journal of Geophysical Research, Vol.86, No.B10, pp.9287-9298, 1981.

    2. Y. W. Tsang﹐The effect of tortuosity of fluid flow through a single fracture﹐Water resources research﹐Vol. 20﹐No. 9﹐pp. 1209-1215﹐1984.

    3. N. Barton﹐S. Bandis and K. Bakhtar﹐Strength﹐deformation and conductivity coupling of rock joints﹐International journal of rock mechanics and mining sciences & geomechanics abstracts﹐Vol. 22﹐No 3﹐pp. 121-140﹐1985.

    4. Witherspoon, P. A., Wang, J. S. Y., Iwai, K. and Gale, J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol.16, No.6, pp.1016-1024, 1985.

    5. J. E. Gale﹐Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties﹐Proceedings of the 28th U.S. symposium﹐University of Arizona﹐Tucson﹐1987.

    6. Stephen R. Brown﹐Fluid flow through rock joints:The effect of surface roughness﹐Journal of geophysical research﹐Vol. 92﹐No B2﹐pp. 1337-1347﹐1987.

    7. Y. W. Tsang and C. F. Tsang﹐Channel Model of Flow Through Fractured Media﹐Water resources research﹐Vol. 23﹐No. 3﹐pp. 467-479﹐1987.

    8. E. Hakami﹐N. Barton﹐Aperture measurements and flow experiments using transparent replicas of rock joints﹐Proceedings of the International Symposium on Rock Joints﹐Loen﹐Norway, pp. 383-390﹐4-6 June﹐1990.

    9. B. Amadei﹐T. Illangsekare﹐Analytical solutions for steady and transient flow in non-homogeneous and anisotropic rock joints﹐International journal of rock mechanics and mining sciences & geomechanics abstracts﹐Vol. 29﹐No 6﹐pp. 561-572﹐1992.

    10. B. Amadei﹐T. Illangsekare﹐A mathematical model for flow and solute transport in non-homogeneous rock fractures﹐International journal of rock mechanics and mining sciences & geomechanics abstracts﹐Vol. 31﹐No 6﹐pp. 719-731﹐1994.

    11. B. Amadei﹐J. F. Carlier and T. Illangsekare﹐Effect of turbulence on fracture flow and advective transport of solutes﹐International journal of rock mechanics and mining sciences & geomechanics abstracts﹐Vol. 32﹐No 4﹐pp. 343-356﹐1995.

    12. E. Hakami﹐Erik Larsson﹐Aperture measurements and flow experiments on a single fracture﹐International journal of rock mechanics and mining sciences & geomechanics abstracts﹐Vol. 33﹐No 4﹐pp. 395-404﹐1996.

    13. P. W. J. Glover﹐K. Matsuki﹐R. Hikima and K-Hayashi﹐Fluid flow in fractally rough synthetic fractures﹐Geophysical research letters﹐Vol. 24﹐No 14﹐pp. 1803-1806﹐1997.

    14. H. Ruan﹐T. H. Illangasekare﹐Estimation of relative hydraulic conductivity of sandy soils based on a sheet flow model﹐Journal of hydrology﹐No 219﹐pp. 83-93﹐1999.

    15. L. J. Pyrak-Nolte﹐J. P. Morris﹐Single fractures under normal stress:The relation between fracture specific stiffness and fluid flow﹐International journal of rock mechanics and mining sciences﹐No. 37﹐pp.245-262﹐2000.

    16. Grace W. Su﹐Jil T. Geller and Karsten Pruess﹐James R. Hunt﹐Solute transport along preferential flow paths in unsaturated fractures﹐Water resources research﹐Vol. 37﹐No. 10﹐pp. 2481-2491﹐2001.

    17. C. A. Tang﹐L. G. Tham﹐P. K. K. Lee﹐T. H. Yang and L. C. Li﹐Coupled analysis of flow﹐stress and damage (FSD) in rock failure﹐International journal of rock mechanics and mining sciences﹐No. 39﹐pp.245-262﹐2002.

    18. Daniel Femandez-Garcia﹐Xavier Sanchez-Vila and Tissa H. Illangasekare﹐Convergent-flow tracer tests in heterogeneous media: combined experimental-numerical analysis for determination of equivalent transport parameters﹐Journal of contaminant hydrology﹐No. 57﹐pp. 129-145﹐2002.

    19. Judith Sausse﹐Hydromechanical properties and alteration of natural fracture surfaces in the Soultz granite(Bas-Rhin﹐France)﹐Tectonphysics﹐No. 348﹐pp. 169-185﹐2002.

    20. 速寶玉、詹美禮、趙堅,光滑裂隙水流模型實驗及其機理初探,水利學報,第5期,pp. 19-24,1994。

    21. 速寶玉、詹美禮、趙堅,仿天然岩體裂隙滲流的實驗研究,岩土工程學報,第17卷,第5期,pp. 19-24,1995。

    22. 楊太華、孫鈞,岩體裂隙非規則幾何水力學特性研究,岩土工程學報,第19卷,第4期,pp. 10-14,1997。

    23. 許光祥,岩石粗糙裂隙寬配曲線和糙配曲線,岩石力學與工程學報,第18卷,第6期,pp. 641-644,1999。

    24. 王建力、陳香如,岩石節理中非均質異向流場之有限元素分析,金廣冶工程年會論文,1999。

    25. 黃智政,應用PIV與FLDV於矩柱前端之穩態馬蹄型渦流分析研究,國立中興大學土木工程學系碩士論文,2000。

    26. 黃吉皇,正向與剪向應力對於花崗岩破裂面透水性質影響之研究,國立成功大學資源工程學系碩士論文,2001。

    下載圖示 校內:立即公開
    校外:2003-07-14公開
    QR CODE