簡易檢索 / 詳目顯示

研究生: 黃志傑
Huang, Chih-Chieh
論文名稱: 針對無線區域網路MAC驅動程式層實作低成本與富彈性QoS排程演算法
Low Cost and Flexible QoS Scheduling by MAC Driver Sublayer for Wireless Local Area Networks
指導教授: 陳朝烈
Chen, Chao-Lieh
詹寶珠
Chung, Pau-Choo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 92
中文關鍵詞: 軟體排程演算法混和協調功能控制通道存取無線網路分散式協調功能增強型分散式通道存取802.11e混和式協調功能
外文關鍵詞: Wireless Networks, HCF, HCCA, 802.11e, DCF, EDCA, Software scheduling algorithm
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於802.11技術提供彈性與便利性無線網路存取功能,目前大多數的消費電子產品也都把Wi-Fi功能訂為產品的基本功能,所以消費者使用無線網路的頻率也大大提升,另外一些大型賣場、速食店與捷運也都配置無線熱點,民眾隨時隨地都可以透過無線熱點連至網路。此外多媒體應用服務的快速增加,大眾想要透過無線網路獲得語音、音樂與影像服務的需求也大幅增加,過去透過無線網路下載一般資料還沒有問題,但是如果是要提供越來越大量的多媒體服務就不得不考慮QoS需求,像是保證網路頻寬以及有限制的delay與jitter來確保這些多媒體網路服務的品質。802.11e是IEEE針對QoS需求所制訂的標準,802.11e提出EDCA與HCCA的QoS機制,目前WiFi產品中有實作出的QoS機制為EDCA,其屬於contention based。而HCCA屬於polling based,且需要在AP與STA端加入控制電路,在硬體實現與控制上都增加不少困難度,所以一般無線產品上大多無此功能。雖然EDCA可以提供無線網路QoS機制增加網路的性能,但是EDCA實現也需要增加額外的硬體電路像是:Backoff engine、CWmin register、CWmax register、Virtual collision handler, ...,等,這也增加了網路裝置的成本與電路設計上的困難,本論文主要希望能在driver sublayer透過簡單的scheduling algorithm達到QoS效果,用以取代無線裝置EDCA電路,減低無線裝置硬體設計上的複雜性與成本,論文的最後會比較DCF與EDCA與我們提出driver layer scheduling algorithm實際在Ralink無線網卡上執行的效果,結果可以看出driver layer scheduling algorithm執行結果可以達到無線網路所需的QoS效果。另外我們也對所提出的排程演算法進行數學分析,證明對於不同的網路連線,可以藉由調整優先權參數達到參數化(parameterized)以及差異化(differentiated)QoS的目標。

    Because the IEEE 802.11 technology provides flexible and convenient wireless access capability, many consumer electronic products include Wi-Fi as one of the basic functions. Therefore, consurmers frequently use wireless networks no matter where they are in supermarkets, food stores, or stations. When surfing the Internet, the multimedia service applications are growing rapidly. People increasingly enjoy voice, music and video services via wireless networks. Therefore, Quality-of-Service (QoS) technology in wireless networks becomes essential. A QoS scheme needs to guarantee bandwidth, limited delay and limited jitter to ensure the Internet service quality. The IEEE defines 802.11e standard to enhance traffic QoS by parameterization and differentiation of the Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA) mechamisms. Currently, most Wi-Fi products vendors only implement the contention-based EDCA mechamism. The HCCA is polling-based mechamism requiring additional control circuits in the Access Point (AP) and Station (STA). Similarly, EDCA also needs additional hardware circuits such as backoff engine, CWmin register, CWmax register, virtual collision handler,…, ect. Both hardware implementation difficulty and cost of HCCA and EDCA are high. In this thesis, we propose a simple scheduling algorithm called Media access control in Driver Sublayer Scheduling (MDSS) to perform QoS management among traffic flows. We prove that the proposed MDSS avoids hardware implementation and thus reduces cost and complexity of Wi-Fi MAC. To perform comparison, we use the Ralink WiFi adapter to realize the traditional DCF, EDCA, and the proposed MDSS scheduling. The oringinally EDCA function in the adapter is turned off by programming contention window parameters to minimum. Simulations and experiments show that the MDSS provides well QoS management without additional hardware cost in the MAC chip. Besides, we also perform mathematical analysis of the MDSS to prove that the MDSS achieves the parameterized and differentiated QoS according to various traffic requirements.

    摘 要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 簡介 1 1.1 動機 1 1.1.1 標準EDCA的QoS問題 2 1.1.2 在MAC晶片上的EDCA缺乏彈性 4 1.1.3 MAC層驅動程式軟體排程演算法 5 第二章 無線網路QoS機制 8 2.1 IEEE 802.11無線區域網路 8 2.2 IEEE 802.11e標準定義的QoS機制 11 2.2.1 IEEE 802.11e EDCA:HCF競爭的部分 12 2.2.2 802.11e HCCA:HCF免競爭的部分 14 2.2.3 802.11e其他QoS機制 16 2.3 EDCA標準於業界之實際應用 18 2.3.1 MAC晶片架構 19 2.3.2 AP驅動程式與MAC晶片共同運作 19 第三章 存取點系統架構與軟體排程 23 3.1 AP驅動程式架構 23 3.2 MDSS 排程 25 第四章 實驗與比較 34 4.1 實驗環境 34 4.2 實驗比較結果 35 第五章 數學分析 49 5.1 觀察等待時間 49 5.2 公式推導 55 5.3 舉例說明 62 5.4 演算法特性分析 73 第六章 結論 85 第七章 未來展望 87 參考文獻 89

    [1] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements” IEEE Standard 802.11e, Nov., 2005.
    [2] IEEE, “Wireless LAN Medium Access Medium Access Control (MAC) and Physical Layer (PHY) specifications.” IEEE Standard 802.11, Jun., 2007.
    [3] IEEE Std. 802.1d, “Media Access Control (MAC) Bridges,” 2004.
    [4] Chao-Lieh Chen, “Morphisms from IEEE 802.11 DCF Specifications to Its EDCA QoS Practice with Cross-Layer Interface,” Proceedings of the 13th IEEE International Conference Parallel and Distributed Systems, Dec. 5-7 2007, Volume 2, pp. 1-8.
    [5] Chao-Lieh Chen, “IEEE 802.11e EDCA QoS Provisioning with Dynamic Fuzzy Control and Cross-Layer Interface,” the 16th International Conference on Computer Communications and Networks, Honolulu, Hawaii USA, Aug. 13-16, 2007, pp.766-771.
    [6] Qiang Ni, “Performance Analysis and Enhancements for IEEE 802.11e Wireless Networks,” IEEE Network, Jul.-Aug. 2005, pp. 21-27.
    [7] S. Choi, J. Prado, S.Shankar N, and St. Mangold, “IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation,” IEEE ICC, May 2003, pp. 1151-1156.
    [8] M. Malli, Q. Ni, T. Turletti and C. Barakat, “Adaptive Fair Channel Allocation for QoS Enhancement in IEEE 802.11 Wireless LANs,” in Proc. IEEE ICC '04, Jun. 2004, pp. 3470-3475.
    [9] L. Romdhani, Qiang Ni, and T. Turletti, “Adaptive EDCF: Enhanced Service Differentiation for IEEE 802.11 Wireless Ad-hoc Networks,” IEEE Wireless Communications and Networking Conference, Volume 2, Mar. 2003, pp. 16-20.
    [10] P. Ansel, Q. Ni, and T. Turletti, “An Efficient Scheduling Scheme for IEEE 802.11e.” Proc. Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Cambridge, U.K., Mar. 2004.
    [11] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE JSAC, vol. 18, no. 3, Mar. 2000, pp. 535-548.
    [12] 陳一瑋 林盈達, ”Linux網路卡驅動程式:追蹤與效能分析”, 國立交通大學出版社,2007.
    [13] 林長毅, ”Linux驅動程式”, O’REILLY, 2006 (第三版).
    [14] D. Gao and J. Cai, “Admission Control in IEEE 802.11e Wireless LANs,” IEEE Network Magazine, vol 19, no. 4, Jul.-Aug. 2005, pp. 6-3.
    [15] RALINK TECHNOLOGY, CORP., “RALINK RT61 Wireless Card SOFTWARE DRIVER,” Available:http://www.ralinktech.com.tw/data/drivers/2007_1210_RT61_Linux_STA_v1.1.2.0.tar.bz2.
    [16] Advance Multimedia Internet Technology (AMIT), Inc. sitemap:http://www.amit.com.tw/index.html.
    [17] Q. Ni, L. Romdhani, and T. Turletti, “A Survey of QoS Enhancements for IEEE 802.11 Wireless LAN,” Wiley J. Wireless and Mobile Comp., vol. 4, no. 5, Aug. 2004, pp. 547-566.
    [18] A. Grilo, M. Macedo, and M. Nunes, “A Scheduling Algorithm for QoS Support in IEEE802.11E Networks.” IEEE Wireless Commun., vol. 10, no.3, Jun. 2003, pp. 36-43.
    [19] 黃能富著, ”區域網路與高速網路”, 維科出版社, 1998 (第二版).
    [20] 黃裕彰 蔣大偉, ”802.11無線網路技術通論”, O’REILLY, 2006 (第二版).
    [21] 陳建勳 蔣大偉, “Linux網路原理” , O’REILLY, 2006.
    [22] 魏煥雲 林盈達, ”網路驅動程式分類與介面標準”, 國立交通大學出版社,2007.
    [23] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and L. Stibor, “IEEE 802.11e Wireless LAN for Quality of Service” , In Proc. of European Wireless (EW2002), Florence, Italy, Volume 2, Feb. 2002, pp. 32-39.
    [24] P. Garg, R. Doshi, R. Greene, M. Baker, M. Malek, and Xiaoyan Cheng, “Using IEEE 802.11e MAC for QoS over wireless,” Performance, Computing, and Communications Conference.Conference Proceedings of the 2003 IEEE International, Apr. 2003, pp.537-542.
    [25] A. Lindgren, A. Almquist, and O. Schelen, “Quality of Servise Schemes for IEEE 802.11 Wireless LANs,” In Proc. of IEEE LCN 2001, Nov. 2001, pp. 348-351.
    [26] Y. Xiao, "Enhanced DCF of IEEE 802.11e to support QoS”, Wireless Communications and Networking, WCNC 2003, Volume 2, Mar. 2003, pp. 1291-1296.
    [27] S. Mangold, C. Sunghyun, G. R. Hiertz, O. Klein, and B. Walke, “Analysis of IEEE 802.11e for QoS Support in Wireless LANs,” IEEE Wireless Commun. Mag., vol. 10, no. 6, Dec. 2003, pp. 40-50.
    [28] A. Grilo, M. Macedo, and M. Nunes, “A Scheduling Algorithm for QoS Support in IEEE 802.11e Networks,” IEEE Wireless Commun, vol. 10, no. 3, June 2003, pp. 36-43.
    [29] Y. Xiao, H. Li, and S. Choi, “Protection and Guarantee for Voice and Video Traffic in IEEE 802.11e Wireless LANs,” Proc. IEEE INFOCOM ’04, Hong Kong, Volume 3, Mar. 2004, pp. 2152-2162.
    [30] D. Pong and T. Moors, “Call Admission Control for IEEE 802.11 Contention Access Mechanism,” Proc. IEEE GLOBECOM’03, San Francisco, CA, Volume 1, Dec. 2003, pp. 174-178.
    [31] W. F. Fan, D. Gao, D. H. K. Tsang, and B. Bensaou, “Admission Control for Variable Bit Rate Traffic in IEEE 802.11e WLANs,” Proc. IEEE LANMAN ’04, Mill Valley, CA, Volume 1, Aug.-Sept. 2004, pp. 61-66.
    [32] Ge, Y. and Hou, J. C, “Making Proportional Bandwidth Guarantees in IEEE 802.11e Enhanced Distributed Channel Access,” Proc. IEEE MILCOM ’06, Washington, DC, CA, Oct. 2006, pp. 23-25.
    [33] T. Taleb, A. Nafaa, L. Murphy, K. Hashimoto, N. Kato and Y. Nemoto, “Toward Efficient Service-Level QoS Provisioning in Large-Scale 802.11-Based Networks,” IEEE Network: Special Issue on Advances in Broadband Access Networks, vol.21, no.5, Sept.-Oct. 2007, pp. 42-48.

    下載圖示 校內:2011-07-30公開
    校外:2011-07-30公開
    QR CODE