簡易檢索 / 詳目顯示

研究生: 林煒棋
Lin, Wei-qi
論文名稱: 溶劑效應對聚(3-己烷基噻吩)薄膜結構與在薄膜電晶體之電傳輸性質的影響研究
Studies of Solvent Effects on Thin-Film Structures and Charge Transport Properties in Poly(3-hexylthiophene)-Based Organic Thin Film Transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 155
中文關鍵詞: 有機薄膜電晶體高分子溶劑效應遲滯效應接觸電阻聚(3-己烷基噻吩)通道電阻
外文關鍵詞: organic thin film transistor, polymer, P3HT, channel resistance, contact resistance, hysteresis, solvent effect
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究高立體規則性之有機高分子半導體poly(3-hexylthiophene)(RR-P3HT)為主動層之薄膜電性晶體的元件特性。首先,使用不同溶劑配製RR-P3HT溶液,包含下列溶劑:p-xylene、1,2,4-trichlorobenzene(TCB)、toluene、及chloroform,再利用旋轉塗佈法製作RR-P3HT薄膜當主動層的電晶體元件。本研究分為三部份,首先進行不同溶劑對RR-P3HT薄膜電晶體元件電傳輸性質的影響研究,包含輸出與轉移的電特性、通道長度效應、遲滯效應、與接觸電阻和通道電阻;第二部份,進一步討論元件存放環境對元件電傳輸性質的影響;第三部份,進行RR-P3HT薄膜結構分析,使用拉曼光譜、X-ray繞射量測、原子力顯微鏡、與紫外-可見光吸收光譜、和光激發光譜等技術,研究不同溶劑對RR-P3HT薄膜結構的影響。
    第一部份,研究不同溶劑對RR-P3HT薄膜電晶體元件電傳輸性質的影響。我們將RR-P3HT溶於不同沸點的溶劑,利用旋轉塗佈法製成RR-P3HT薄膜為主動層之電晶體元件,再藉由輸出曲線及轉換曲線的量測結果來比較不同溶劑對RR-P3HT薄膜電晶體元件電傳輸性質的影響。我們得知使用高沸點溶劑溶解RR-P3HT所製作的以RR-P3HT薄膜為主動層之電晶體元件的電傳輸性質較佳、磁滯效應較不明顯、接觸電阻及通道電阻較小。
    第二部份,研究元件存放環境對元件電傳輸性質的影響。首先將已量測的薄膜電晶體元件於真空環境中靜置後,再進行量測輸出曲線及轉換曲線,比較電晶體元件在真空靜置前及真空靜置後電性參數的變化。我們建議真空靜置可以提升電晶體元件的效能,如場效載子遷移、開關比、臨界電壓及次臨界斜率等方面的改善。除此之外,真空靜置亦會造成一些非理想化效應,如遲滯現象變得更明顯,接觸電阻及通道電阻變大等現象。
    第三部份,研究溶劑效應對RR-P3HT薄膜結構的差異性,藉由分析來觀察薄膜微結構的有序性、薄膜的表面形態學、高分子鏈內及高分子鏈間的載子傳輸模式,我們建議RR-P3HT薄膜結構與其所使用溶劑沸點的高低是有相關性的,如使用高沸點溶劑所製作的RR-P3HT薄膜之有序性較佳。我們也建議溶劑沸點高低所影響的薄膜結構為主宰薄膜電晶體元件的場效載子遷移率的重要因素。

    In this study, we studied the thin-film structures and electronic transport properties of poly(3-hexylthiophene) (RR-P3HT) films in organic thin-films transistors (OTFTs). The RR-P3HT films were prepared by solution deposition through a spin-coating technique using several different solvents which have different boiling points. In part 1, the solvent effects on the device performance of RR-P3HT OTFTs were investigated. In part 2, effects of various storage conditions in vacuums for RR-P3HT OTFTs on device electrical characterizations were investigated. In part 3, we studied the thin-film structure and morphology of the corresponding RR-P3HT films.
    In part I, we reported on the solvent effects of electrical characterization on RR-P3HT OTFT devices; the solvents included p-xylene, 1,2,4-trichlorobenzene (TCB), toluene, and chloroform. We found that the RR-P3HT OTFTs that used a higher boiling point solvent, i.e. TCB, for depositing polymer active layers had better device performance, a smaller hysteresis phenomenon, and lower contact and channel resistance. The results of our experiment suggested that the solvent used for preparing RR-P3HT films played an important role in electrical characteristics of OTFT devices.
    In part 2, we investigated the influence of storage time for a long period in vacuum conditions on the device characteristics of RR-P3HT OTFTs. We found that the device performance improved after the transistors were kept in vacuum for a while and included enhanced field-effect mobility, enlarged on-off current ratios, smaller absolute values of threshold voltage, and sharper sub-threshold swings, suggesting a negative effect from the residual solvent. However, the hysteresis loops were more apparent and the contact and channel resistance became higher. The observations were attributed to the devices stored under vacuum conditions, allowing the residual solvent to escape from RR-P3HT films, thus leaving some vacancies to act like trapped states. At the same time, the effects of residual solvents on the device characteristics were also decreased; we still observed the improved performance of RR-P3HT OTFTs.
    In part 3, we studied the structural properties of RR-P3HT films deposited on the gate dielectric surfaces by spin-coating methods using various solutions. The RR-P3HT films were characterized by micro-Raman spectroscopy, X-ray diffraction, atomic force microscopy, UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The results revealed that using a high boiling point solvent process, i.e. TCB, resulted in a more ordered structure of RR-P3HT films. The observations provided a reasonable explanation for better device performance of RR-P3HT OTFTs when using TCB as a solvent. Consequently, we suggested that the used solvents played an important role, not only in RR-P3HT thin film structures but also the corresponding OTFT characterizations.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 XI 第1章 簡介及理論基礎 1 1-1. 前言 1 1-2. 有機半導體傳輸機制 2 1-3. 有機薄膜電晶體概論 3 1-3-1. 有機薄膜電晶體基本構造 4 1-3-2. P型有機薄膜電晶體基本原理 4 1-3-3. 有機薄膜電晶體基本特性與公式計算 5 1-4. 本論文研究目的 9 第2章 溶劑效應對底部接觸元件之影響研究 16 2-1. 前言 16 2-2. 實驗方法 19 2-2-1. 有機材料 19 2-2-2. 高分子溶液製備 20 2-2-3. 元件製備 21 2-2-4. 量測方法 22 2-3. 實驗結果與討論 24 2-3-1. 偏壓與載子遷移率之關係 24 2-3-2. 不同溶劑對元件的影響:電性參數 25 2-3-3. 不同溶劑對元件的影響:通道長度效應 27 2-3-4. 不同溶劑對元件的影響:遲滯效應 29 2-3-5. 不同溶劑對元件的影響:接觸電阻與通道電阻 31 2-4. 結語 37 第3章 元件真空靜置後重覆量測的影響 86 3-1. 前言 86 3-2. 實驗方法 88 3-2-1. 有機材料 88 3-2-2. 高分子溶液製備 88 3-2-3. 元件製備 88 3-2-4. 量測方法 88 3-3. 結果與討論 89 3-3-1. 真空靜置對元件的影響:電性參數 89 3-3-2. 真空靜置對元件的影響:通道長度效應 90 3-3-3. 真空靜置對元件的影響:遲滯效應 91 3-3-4. 真空靜置對元件的影響:接觸電阻及通道電阻 92 3-4. 綜合討論 94 3-5. 結語 95 第4章 薄膜分析與電傳輸特性關係之研究 118 4-1. 前言 118 4-2. 實驗方法 120 4-2-1. 有機材料 120 4-2-2. 薄膜製備 120 4-2-3. 薄膜量測分析實驗條件 120 4-3. 結果與討論 122 4-3-1. 拉曼光譜分析 122 4-3-2. X-ray薄膜繞射分析 123 4-3-3. 原子力顯微鏡分析 126 4-3-4. 紫外-可見光吸收光譜分析 128 4-3-5. 光激發光譜分析 130 4-4. 結語 132 第5章 總結與未來展望 142 參考文獻 146

    [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes” Appl. Phys. Lett. 51, p.913, 1987.
    [2] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature, 347, p.539, 1990.
    [3] F. Ebisawa, T. Kurokawa and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” J. Appl. Phys. 54, p.3255, 1983.
    [4] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett. 49, p.1210, 1986.
    [5] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes” J. Lumine. 60, p.906, 1994.
    [6] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett. 62, p.585, 1993.
    [7] Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors” J. Mater. Chem. 15, p.53, 2005.
    [8] M. Ahlskong, J. Paloheimo, H. Stubb and A. Assadi, “Pressure-dependent operation in poly(3-alkylthiophene) field-effect transistors and Schottky diodes” Synth. Met. 65, 77, 1994.
    [9] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari and J. M. Shaw, “Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators” Science, 283, p.822, 1999.

    [10] P. Dyreklev, G. Gustafassou, O. Inganass and H. Stubb, “Aligned polymer chain field effect transistors” Solid State Commun. 82, 317, 1992.
    [11] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, “Entacene organic thin-film transistors - Molecular ordering and mobility” IEEE Elect. Device Lett. 18, 87, 1997.
    [12] G. Horowitz, X. peng, D. Fichou, F. Ganrnier, “Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors” Synth. Met. 51, 419, 1992.
    [13] C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater. 14, 99, 2003.
    [14] S. M. Sze, “Semiconductor Devices:Physics and technology 2nd edition” John Wiley & Sons, INC, New York, 2001.
    [15] G. Horowitz, “Organic field-effect transistors” Adv. Mater. 10, p.365, 1998.
    [16] H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers” Science, 280, p.1741, 1998.
    [17] G. H. Gelinck, T. C. T. Geuns and D. M. de Leeuw, “High-performance all-polymer integrated circuits” Appl. Phys. Lett. 77, p.1487, 2000.
    [18] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, “Large-scale complementary integrated circuits based on organic transistors” Nature, 403, p.521, 2000.
    [19] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters and D. M. de Leeuw, “Low-cost all-polymer integrated circuits” Appl. Phys. Lett. 73, p.108, 1998.
    [20] J. R. Sheats, “Manufacturing and commercialization issues in organic electronics” J. Mater. Res. 19, p.1974, 2004.

    [21] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D.Thesis, “Pentacene-based radio-frequency identification circuitry” Appl. Phys. Lett. 82, p.3964, 2003.

    [22] T.W. Kelley, P.F. Baude, C. Gerlach, D.F. Ender, D. Muyres, M.A. Haase, D.E. Vogel and S.D. Theiss, “Recent progress in organic electronics: materials, devices, and processes” Chem. Mater. 16, p.4413, 2004.

    [23] W. Clemens, W. Fix, J. Ficker, A. Knobloch, A. Ullmann, “From polymer transistors toward printed electronics” J. Mater. Res. 19, p.1963, 2004.

    [24] B. Crone, A. Doadbalapur, A. Gelperin, L. Torsi, H.E. Katz, A.J. Lovinger and Z. Bao, “Electronic sensing of vapors with organic transistors” Appl. Phys. Lett. 78, p.2229, 2001.

    [25] L. Torsi, N. Cioffi, C.D. Franco, L. Sabbatini, P.G. Zambonin, T. Bleve-Zacheo, “Organic thin film transistors: from active materials to novel applications” Solid-State Electron. 45, p.1479, 2001.

    [26] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications” Proc. Natl. Acad. Sci. 101, p.9966, 2004.

    [27] J. A. Rogers, Z. Bao and A. Dodabalapur, “Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping” IEEE Electron Device Lett. 21, p.100, 2000.

    [28] P. Mach, S.J. Rodriguez, R. Nortrup, P. Wiltiuz and J.A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors” Appl. Phys.Lett. 78, p.3592, 2001.

    [29] C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gunbdlich, T.N. Jackson,M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates” Appl. Phys. Lett. 80, p.1088, 2002.

    [30] Y.-H. Kim, S.-K. Park, D.-G. Moon, W.-K. Kim and J.-I. Han, “Active-matrix liquid crystal display using solution-based organic thin film transistors on plastic substrates” Displays 25, p.167, 2004.

    [31] B. Comiskey, J. D. Albert, H. Yshizawa and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays” Nature, 394, p.253, 1998.

    [32] G. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field effect transistor” J. Appl. Phys. 93 p.6137, 2003.

    [33] C. D. Dimitrakopuls and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances” IBM J. Res. Develop. 45, p.11, 2001.

    [34] Z. Bao, A. Dodabalapur and A.J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility” Appl. Phys. Lett. 69, p.4108, 1996.

    [35] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon,W. K. Kim and M. G. Kwak, “Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates” Synth. Met. 139, p.377, 2003.

    [36] M. M. Ling and Z. Bao, “Thin film deposition, patterning, and printing in organic thin film transistors” Chem. Mater. 16, p.4824, 2004.
    [37] G. Gu, M. G. Kane, J. E. Doty and A. H. Firester, ”Electron traps and bysteresis in pentacene-based organic thin-film transistors” Appl. Phys. Lett. 87, 243512, 2005.
    [38] H. Rost, J. Ficker, J.S. Alonso, L. Leenders and I. McCulloch, “Air-stable all-polymer field-effect transistors with organic electrodes” Synth. Met. 145, p.83, 2004.
    [39] J. Kanicki, C. Martin, in: C.R. Kagan and P. Andry (Eds.), “Thin-film transistor” Marcel dekker, New York, USA, p.118, 2004.
    [40] J. Bao, A. Dodabalapur and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility” Appl. Phys. Lett. 69, p.4108, 1996.
    [41] M. J. Joung, C. A. Kim, S. Y. Kang, Kyu-Ha Beak, G. H. Kim, S. D. Ahn, I. K. You, J. H. Ahn and K. S. Suh, “The application of soluble and regioregular poly(3-hexylthiophene) for organic thin-film transistors” Synth. Met. 149, p.73, 2005.
    [42] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, “Ehanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents.” Chem. Mater. 16, p.4772, 2004.
    [43] H. Sirringhaus , P. J. Brown , R. H. Friend , M. M. Nielsen , K. Bechgaard , B. M. W. Langeveld-Voss , A. J. H. Spiering , R. A. J. Janssen , E. W. Meijer, P. Herwing and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature, 401, p.685, 1999.
    [44] H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated, high-mobility polymer field-effect transistors driving polymer light-emmiting diodes” Synth. Met. 102, p.857, 1999.
    [45] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Lgeveld-Voss, A. J. H. Spiering, R. A. J. Janssen and E. W. Meijer, “Microstructure–mobility correlation in self-organised, conjugated polymer field-effect transistors” Synth. Met. 111-112, p.129, 2000.
    [46] G. Wang, J. Swensen, D. Moses and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene)field-effect transistors” J. Appl. Phys. 93, p.6171, 2003.
    [47] G. Wang, T. Hirasa, D. Moses and A. J. Heeger, “Fabrication of regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating” Synth. Met. 146, p.127, 2004.
    [48] G. Lloyd, M. Raja, I. Sellers, N. Sedghi, R. D. Lucrezia, S. Higgins, B. Eccleston, “The properties of MOS structures using conjugated polymers as the semiconductor” Microelectronic Engineering, 59, p.323, 2001.
    [49] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, K. G. Moon, S. Park, T. Chang, C. Chang, M. Joo and C. Y. Ryu, “Enhancement of Field-Effect Mobiliuty Due to Surface-Mediated Molecular Ordering in regioregular poly(3-hexylthiophene) field-effect transistors” Adv. Funct. Mater. 15, p.77, 2005.
    [50] M. Surin, P. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, S. Cho, K. Lee, “Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors” J. Appl. Phys. 100, 0033712, 2006.
    [51] T. A. Chen, X. Wu and R. D. Rieke, “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties” J. Am. Chem. Soc. 117, p.233, 1995.
    [52] P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, “Gated four-probe measurements on pentacene thin-film transistors :Contact resistance as a function of gate voltage and temperature” J. Appl.Phys. 96, 7312, 2004.
    [53] R. Hattori and J. Kanicki, “Contact resistance in Schottky dontact gated-four-probe a-Si thin-film transistor” Jpn. J. Appl. Phys. 42, 907, 2003.
    [54] P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors” Solid-State electron. 47, p.259, 2003.
    [55] Electronics. 2003, 47, 259-262.[29] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A.Nichols and T. N. Jackson, “Contact resistance in organic thin filmtransistors” Solid-State Electron. 47, p.297, 2003
    [56] I. Yagi, K. Tsukagoshi and Y. Aoyagi, “Direct observation of contactand channel resistance in pentacene four-terminal thin-film transistorpatterned by laser ablation method” Appl. Phys. Lett. 84, p.813, 2004.
    [57] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols and T. N. Jackson, “Contact resistance in organic thin film transistors” Solid-State Electronics, 47, p.297, 2003.
    [58] D. R. Gamota, P. Brazis, K. Kalyanasundaram and J. Zhang, “Printed organic and molecular electronics” Kluwer Academic Publishers, Norwell, 2004.
    [59] K. Seshadri and C. D. Frisbie, “Potentiometry of an operating organic semiconductor field-effect transistor” Appl. Phys. Lett. 78, p.993, 2001.
    [60] A. Salleo, M. L. Chabiny, M. S. Yang, and R. A. Street, “Polymer thin-film transistor with chemically modified dielectric interfaces” J. Appl. Phys. 81, 23, p.4383, 2002.
    [61] M. S. A. Abdou, F. P. Orfino, Y.-K. Son and S. Holdcroft, “Interaction of oxygen with conjugated polymers : charge transfer complex formation with poly(3-alkythiophenes)” J. Am. Chem. Soc. 119, p.4518, 1997.
    [62] S. Uemura, M. Yoshida, S. Hoshino, T. Kodzasa and T. Kamata, “Influence of the atmosphere on the electric behavior of a polymeric field effect transistor” Mol. Cryst. Liq. Cryst. 424, p.209, 2004.
    [63] S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata and K. Yase, “Influence of moisture on device characteristics of polythiophene-based field-effect transistors” J. Appl. Phys. 95, p.5088, 2004.
    [64] Y. W. Liu, K. Oshima, T. Yamauchi, M. Shimomura and S. Miyauchi, “Study of switching characteristic with positive temperature coefficient of poly(3-hexylthiophene)” Synth. Met. 101, p.451, 1999.
    [65] E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van. Veenendaal, D. M. de Leeuw and T. M. Klapwijk, “Dopant density determination in disordered organic field-effect transistors” J. Appl. Phys. 93, 8, p.4831, 2003.
    [66] B. A. Mattis, P. C. Chang and V. Subramanian, “Effect of thermal cycling on performance of Poly(3-hexylthiophene) Transistors” Mat. Res. Soc. Symp. Proc. 771, L10.35. 2003.
    [67] C. Vgterlein, B. Ziegler, W. Gebauer, H. Neureiter, M. Stoldt, M. S. Weaver, P. Btiuerle, M. Sokolowski, D. D. C. Bradley and E. Umbach, ”Electrical conductivity and oxygen doping of vapour-deposited oligothiophene films” Synth. Met. 76, p.133, 1996.
    [68] A. N. Aleshin, H. Sandberg, H. Stubb, “Two-dimensional charge mobility studies of regioregular P3HT” Synth. Met. 121, p.1449, 2001.
    [69] B. S. Ong, Y. Wu, P. Liu and S. Gardner, ”High-performance semiconducting polythiophenes for organic thin-film transistors” J. Am. Chem. Soc. 126, p.3378, 2004.
    [70] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu and J. M. J. Frechet, Adv. Mater. 15, p.1519, 2003.
    [71] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu and Z. Bao, “Effect ofmesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors” Adv. Funct. Mater. 15, p.671, 2005.
    [72] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski and S. Lefrant, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)” J. Phys. Chem. 100, p.12532, 1996.
    [73] S. Lefrant, I. Baltog, M. Lamy de Chapelle, M. Baibarac, G. Louarn, C. Journet and P. Bernier, “Structural properties of some conductingpolymers and carbon nanotubes investigated by SERS spectroscopy” Synth. Met. 100, p.13, 1999.
    [74] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Batlog, “SERSspectra of poly(3-hexylthiophene) in oxidized and unoxidized states” J. Raman Spectrosc, 29, p.825, 1998.
    [75] G. Zerbi, B. Chierichetii, O. Inganas, “Thermochromism inpolyalkylthiophenes: molecular aspects from vibrational spectroscopy” J. Chem. Phys. 97, p.4646, 1991.
    [76] K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai and K. Yoshino, “Structure and thermochromic solid-state phase transition of poly(3-alkylthiophene)” J. Polym. Sci. 29, p.1223, 1991.
    [77] M. Kobashi and H. Takeuchi, “Inhomogeneity of Spin-coated and cast non-regioregular poly(3-hexylthiophene) films. structures and electrical and photophysical properties” Macromolecules, 31, p.7273, 1998.
    [78] T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, O. Ambacher, “Absorption and crystallinity of poly(3-hexylthiophene)/ fullerene blends in dependence on annealing temperature” Thin Solid Film, 511-512, p.483, 2006.
    [79] R. Österbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals” Science, 287, p.839, 2000.
    [80] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Inganäs, R. Feidenhans’l and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films” Macromolecules, 33, p.3120, 2000
    [81] E. Itoh, I. Torresl and D. M. Taylorl, “The influence of interfacial charge exchange phenomena at the insulator-semiconductor interface on the electrical properties of poly(3-hexylthiophene) based field effect transistors” Jpn. J. Appl. Phys. 44, p.641, 2005.
    [82] J.-M.e Verilhac, G. LeBlevennec, D. Djurado, F. ois Rieutord, M. Chouiki, J.-P. Travers, A. Pron, “Effect of macromolecular parameters and processing conditions onsupramolecular organisation, morphology and electrical transportproperties in thin layers of regioregular poly(3-hexylthiophene)” Synth. Met. 156, p.815, 2006.
    [83] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly.3-hexylthiophene” Phys. Rev. B, 67, 064203, 2003.
    [84] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly.3-hexylthiophene” Phys. Rev. B, 67, 064203, 2003.
    [85] V. Ruiz, P. G. Nicholson, S. Jollands, P. A. Thomas, J. V. Macpherson, and P. R. Unwin, “Molecular ordering and 2D conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite film” J. Phys. Chem. B, 109, 19335, 2005.

    下載圖示 校內:2008-07-30公開
    校外:2008-07-30公開
    QR CODE