簡易檢索 / 詳目顯示

研究生: 許佳桂
Hsu, Chia-Kuei
論文名稱: 高分子薄膜與銅界面脫層之成長分析
Analysis of Debond Propagation on the Polymer-Cu Thin-Film Interface
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 脫層高分子薄膜-銅薄膜界面破壞韌性疲勞特性曲線裂紋驅動力
外文關鍵詞: delamination, fracture toughness, fatigue growth rate, crack driving force, finite element
相關次數: 點閱:178下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今電子封裝產業利用多層互連結構,提高電子元件中積體電路的密度,以滿足產品輕薄化的需求,在此趨勢下,相異材料界面因為熱膨脹係數不匹配產生脫層的現象,成為關鍵的失效原因之一,其中高分子薄膜作為介電層的使用廣泛,彰顯了高分子與金屬界面可靠度的重要,本研究將以高分子薄膜與銅薄膜為目標界面,在破壞力學的理論基礎上對界面脫層進行分析。
    本研究針對高分子薄膜與銅界面的分析可分為三個主題:界面破壞韌性量測、疲勞脫層特性分析以及界面脫層驅動力。透過四點彎矩破壞實驗,量測高分子與銅界面的混和模式破壞韌性,分析不同高分子介電材與銅界面強度差異,考慮清潔製程與高溫高濕環境老化對介面強度的影響。疲勞脫層特性則利用對雙懸臂樑施加模式一循環負載的實驗求取,量測得高溫高濕環境老化的高分子與銅界面之疲勞特性曲線。同時利用虛擬裂紋閉合法搭配1/4奇異有限元素,針對高分子與銅界面的側壁裂紋進行脫層驅動力模擬,結果發現側壁裂紋的上下尖端具有相同的應變能釋放率,藉由重佈層金屬間距、裂紋長度與破壞力學參數的關係,配合量測所得之界面破壞韌性及疲勞脫層成長特性,可有根據地評估側壁裂紋的成長趨勢。

    Debonding of dissimilar materials interface is a critical issue to be considered in the microelectronics industry. In this thesis debond propagation on the polymer-Cu thin-film interface is considered. The mixed-mode critical strain energy release rate of two polymer-Cu interfaces were measured by the four-point bending (4PB) fracture test, and effects of cleaning processing and moisture preconditioning to the interface adhesion were investigated. The fatigue debond growth rate of the interface of interest was also characterized under Mode-I cyclic loading by using a double cantilever beam (DCB) setup. The steady-state fatigue debond growth rate is found to display a power-law dependence on the strain energy release rate. By using numerical finite element simulation, the polymer-Cu debond growth driving force for a Cu-pad sidewall crack under thermal excursion was also obtained. The risk of critical debond growth along the sidewall was also evaluated by comparing the experimentally obtained fracture toughness to the numerically estimated debond driving force. The fatigue life of an interfacial crack can also be evaluated with the measured fatigue crack growth characteristics and the crack driving force.

    摘要 I Abstract II 致謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號說明 XX 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究目的與方法 7 第二章 理論背景 9 2.1破壞力學參數 9 2.2界面破壞力學理論 10 2.3疲勞裂紋成長 16 2.4四點彎矩破壞問題 19 2.5雙懸臂樑模式一破壞問題 22 第三章 四點彎矩破壞韌性實驗 30 3.1四點彎矩測試簡述及試件 30 3.2試件準備 31 3.3實驗步驟 34 3.4數據處理 36 3.5結果與討論 37 第四章 雙懸臂樑模式ㄧ疲勞實驗 40 4.1 雙懸臂樑試件製備 41 4.2 實驗方法 44 4.3 實驗步驟 47 4.4 數據處理 47 4.5 結果與討論 49 第五章 高分子-銅薄膜界面脫層驅動力分析 53 5.1 側壁裂紋脫層問題 53 5.2 有限元素模型 55 5.3 破壞力學參數求解 58 5.4收斂性分析 60 5.5結果與討論 63 5.5.1裂紋長度之影響 63 5.5.2軸對稱與平面應變假設 65 5.5.3重佈層金屬間距之影響 67 第六章 結論與未來研究方向 70 6.1結論 70 6.2未來研究方向 72 參考文獻 73

    [1] X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 18, pp. 150-153, 1995.
    [2] W. D. van Driel, M. A. J. van Gils, R. B. R. van Silfhout and G. Q. Zhang, “Prediction of Delamination Related IC & Packaging Reliability Problems,” Microelectronics Reliability, vol. 45, pp. 1633-1638, 2005.
    [3] C. Schuckert, D. Murray, C. Robert, G. Cheek and T. Goida, “Polymide stress buffers in IC technology,” in IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, 1990, pp. 72-74.
    [4] S. Benayoun, L. Fouilland-Paille and J. J. Hantzpergue, “Microscratch test studies of thin silica films on stainless steel substrates,” Thin Solid Films, vol. 352, pp. 156-166, 1999.
    [5] W. K. Szeto, M. Y. Xie, J. K. Kim, M. M. F. Yuen, P. Tong and S. Yi, “Interface failure criterion of button shear test as a means of interface adhesion measurement in plastic packages,” in Electronic Materials and Packaging, 2000. (EMAP 2000). International Symposium on, 2000, pp. 263-268.
    [6] J. Yang and O. Paul, “Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes,” Sensors and Actuators A: Physical, vol. 97-98, pp. 520-526, 2002.
    [7] Y.-T. Yen and Y.-C. Lin, “Study peeling strength of tape carrier packaging and chip scale packaging,” Sensors and Actuators A: Physical, vol. 139, pp. 330-336, 2007.
    [8] R. Dauskardt, M. Lane, Q. Ma and N. Krishna, “Adhesion and debonding of multi-layer thin film structures,” Engineering Fracture Mechanics, vol. 61, pp. 141-162, 1998.
    [9] J. Mroz, R. Dauskardt and U. Schleinkofer, “New adhesion measurement technique for coated cutting tool materials,” International Journal of Refractory Metals and Hard Materials, vol. 16, pp. 395-402, 1998.
    [10] H. Miyagawa, C. Sato and K. Ikegami, “Fracture toughness evaluation for multidirectional CFRP by the Raman coating method,” Composites Science and Technology, vol. 60, pp. 2903-2915, 2000.
    [11] X. S. Dai, M. V. Brillhart and P. S. Ho, “Adhesion measurement for electronic packaging applications using double cantilever beam method,” Components and Packaging Technologies, IEEE Transactions on, vol. 23, pp. 101-116, 2000.
    [12] J.-H. Kim, S. B. Lee and Y. Earmme, “Experimental determination of thin film adhesion using 4 point bending specimen,” in Electronic Materials and Packaging, 2001. EMAP 2001. Advances in, 2001, pp. 376-381.
    [13] B. J. McAdams and R. Pearson, “Initiation and propagation of delaminations at the underfill/passivation interface relevant to flip-chip assemblies,” Device and Materials Reliability, IEEE Transactions on, vol. 4, pp. 169-175, 2004.
    [14] S. Roham, K. Hardikar and P. Woytowitz, “Crack penetration and deflection at a bimaterial interface in a four-point bend test,” Journal of Materials Research, vol. 19, pp. 3019-3027, 2004.
    [15] Z. Cui, G. Dixit, L. Q. Xia, A. Demos, B. H. Kim, D. Witty, et al., “Benchmarking four point bend adhesion testing: the effect of test parameters on adhesion energy,” in Characterization and Metrology for ULSI Technology 2005, 2005, pp. 507-511.
    [16] R. Shaviv, S. Roham and P. Woytowitz, “Optimizing the precision of the four-point bend test for the measurement of thin film adhesion,” Microelectronic Engineering, vol. 82, pp. 99-112, 2005.
    [17] B. Kim, Y. Kim, M. Moon, B. Choi and M. Ko, “Adhesion properties of polymethylsilsesquioxane based low dielectric constant materials by the modified edge lift-off test,” Microelectronic Engineering, vol. 85, pp. 74-80, 2008.
    [18] M. Kolluri, M. Thissen, J. Hoefnagels, J. van Dommelen and M. Geers, “In-situ characterization of interface delamination by a new miniature mixed mode bending setup,” International Journal of Fracture, vol. 158, pp. 183-195, 2009.
    [19] M. Kolluri, J. Hoefnagels, J. Van Dommelen and M. Geers, “An improved miniature mixed-mode delamination setup for in situ microscopic interface failure analyses,” Journal of Physics D: Applied Physics, vol. 44, pp. 5-34, 2011.
    [20] L. Da Silva, V. Esteves and F. Chaves, “Fracture toughness of a structural adhesive under mixed mode loadings,” Materialwissenschaft und Werkstofftechnik, vol. 42, pp. 460-470, 2011.
    [21] B. Debecker, K. Vanstreels, M. Gonzalez and B. Vandevelde, “Delamination in BEOL: analysis of interface failure by combined experimental & modeling approaches,” in Reliability Physics Symposium (IRPS), 2013 IEEE International, 2013, pp. 5C.2.1-5C.2.6.
    [22] L. Ključar, M. Gonzalez, K. Vanstreels, A. Ivanković, M. Hecker and I. De Wolf, “Effect of 4-point bending test procedure on crack propagation in thin film stacks,” Microelectronic Engineering, vol. 137, pp. 59-63, 2015.
    [23] J. Guzek, H. Azimi and S. Suresh, “Fatigue crack propagation along polymer-metal interfaces in microelectronic packages,” Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 20, pp. 496-504, 1997.
    [24] S.-Y. Kook, J. Snodgrass, A. Kirtikar and R. Dauskardt, “Adhesion and reliability of polymer/inorganic interfaces,” Journal of Electronic Packaging, vol. 120, pp. 328-335, 1998.
    [25] J. Snodgrass, D. Pantelidis, M. Jenkins, J. Bravman and R. Dauskardt, “Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading,” Acta Materialia, vol. 50, pp. 2395-2411, 2002.
    [26] A. Pirondi and G. Nicoletto, “Fatigue crack growth in bonded DCB specimens,” Engineering Fracture Mechanics, vol. 71, pp. 859-871, 2004.
    [27] D. D. Samborsky, A. T. Sears, P. Agastra and J. F. Mandell, “Mixed Mode Static and Fatigue Crack Growth in Wind Blade Paste Adhesives,” presented at the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.
    [28] E. Poshtan, S. Rzepka, B. Michel, C. Silber and B. Wunderle, “An accelerated method for characterization of bi-material interfaces in microelectronic packages under cyclic loading conditions,” presented at the Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2014 15th international conference on, 2014.
    [29] G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” Journal of Applied Mechanics, vol. 24, pp. 361-364, 1957.
    [30] E. F. Rybicki and M. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Engineering Fracture Mechanics, vol. 9, pp. 931-938, 1977.
    [31] M. Williams, “The stresses around a fault or crack in dissimilar media,” Bulletin of the Seismological Society of America, vol. 49, pp. 199-204, 1959.
    [32] P. Matos, R. McMeeking, P. Charalambides and M. Drory, “A method for calculating stress intensities in bimaterial fracture,” International Journal of Fracture, vol. 40, pp. 235-254, 1989.
    [33] W. Chow and S. Atluri, “Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral,” Computational Mechanics, vol. 16, pp. 417-425, 1995.
    [34] C. Sun and W. Qian, “The use of finite extension strain energy release rates in fracture of interfacial cracks,” International Journal of Solids and Structures, vol. 34, pp. 2595-2609, 1997.
    [35] A. Agrawal and A. M. Karlsson, “Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique,” International Journal of Fracture, vol. 141, pp. 75-98, 2006.
    [36] C. Bjerken and C. Persson, “A numerical method for calculating stress intensity factors for interface cracks in bimaterials,” Engineering Fracture Mechanics, vol. 68, pp. 235-246, 2001.
    [37] A. A. Volinsky, J. B. Vella and W. W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation,” Thin Solid Films, vol. 429, pp. 201-210, 2003.
    [38] A. A. Griffith, “The phenomena of rupture and flow in solids,” Philosophical Transaction, Series A, vol. 221, pp. 163-198, 1920.
    [39] G. R. Irwin and J. Kies, “Critical energy rate analysis of fracture strength,” Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954.
    [40] J. Rice, Z. Suo and J. Wang, “Mechanics and thermodynamics of brittle interfacial failure in bimaterial systems,” ed: In: Ruhle M, Evans AG, Ashby MF, Hirth JP, editors.Metal-Ceramics Interfaces, New York: Pergamon,, 1990, pp. 269-294.
    [41] J. Dundurs, “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading,” Journal of Applied Mechanics, vol. 36, pp. 650-652, 1969.
    [42] J. Rice, “Elastic fracture mechanics concepts for interfacial cracks,” Journal of Applied Mechanics, vol. 55, pp. 98-103, 1988.
    [43] J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” in Advances in Applied Mechanics. vol. 29, ed, 1992, p. 191.
    [44] K. Venkatesha, B. Dattaguru and T. Ramamurthy, “Finite element analysis of an interface crack with large crack-tip contact zones,” Engineering Fracture Mechanics, vol. 54, pp. 847-860, 1996.
    [45] P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85, pp. 528-533, 1963.
    [46] S.-W. Zhu, C.-P. Shih, T.-C. Chiu and G. Shen, “Delamination fracture characteristics for polyimide-related interfaces under fatigue loadings,” in Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International, 2010, pp. 1-4.
    [47] P. Charalambides, J. Lund, A. Evans and R. McMeeking, “A test specimen for determining the fracture resistance of bimaterial interfaces,” Journal of Applied Mechanics, vol. 56, pp. 77-82, 1989.
    [48] M. Kanninen, “An augmented double cantilever beam model for studying crack propagation and arrest,” International Journal of Fracture, vol. 9, pp. 83-92, 1973.
    [49] 王建智,含邊緣裂紋樑受混合模式彎矩之破壞力學分析,碩士論文,機械工程學系,國立成功大學,2012。
    [50] G.-D. Sim, C.-K. Chung, K.-W. Paik and S.-B. Lee, “Experimental analysis on the mechanism of moisture induced interface weakening in ACF package,” in Microelectronics and Packaging Conference, 2009. EMPC 2009. European, 2009, pp. 1-7.
    [51] 郭献駿,材料界面受混和模式作用下疲勞裂紋成長特性量測系統之建立,碩士論文,機械工程學系,國立成功大學,2014。
    [52] 呂威,鋁-環氧樹脂界面裂紋受混和模式負載之疲勞裂紋成長,碩士論文,機械工程學系,國立成功大學,2016。
    [53] I. Raju, J. Crews and M. Aminpour, “Convergence of strain energy release rate components for edge-delaminated composite laminates,” Engineering Fracture Mechanics, vol. 30, pp. 383-396, 1988.

    下載圖示 校內:2018-07-07公開
    校外:2018-07-07公開
    QR CODE