| 研究生: |
邱冠語 Chiu, Kuan-Yu |
|---|---|
| 論文名稱: |
使用奈米球鏡微影術製程親手性結構並以有限時域差分法模擬 Fabrication of Chiral Structures Using Nanospherical-Lens Lithography with FDTD Simulations |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 共同指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 奈米球鏡微影術 、親手性物質 、光學親手性增益 、生物感測 |
| 外文關鍵詞: | Nanospherical-Lens Lithography, Stereometamaterials, Optical Chirality Enhancement, bio-sensing |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
親手性結構擁有較明顯的旋光現象,使其在左右旋光波源下有極度不一樣的反應,利用了有限時域差分法(FDTD)之模擬方法,找出了在不同結構下對應旋光態的表現,也進行了一連串的模態分析。對於在奈米球微影術製程找出了較可行的結構。雙層旋轉C環金屬結構,利用了上下金屬的耦合,會造成能階分裂的現象發生,也因為上下層金屬C環結構之旋轉,造成有旋光性之現象發生,那當由自由空間轉換成較符合實際的情況時,兩層金屬中間有二氧化矽作為阻隔層,使其能階分裂下不明顯,造成上下耦合之效果減弱,導致在圓二色性之數值有明顯之減少,在製程方面必須要先填補下層金屬C環結構之開口,再蒸鍍出上層旋轉的C環結構,有製程上的技術困難需克服,所以在實驗上的結構選擇就為扭曲的金屬弧線結構(Twist-arc structures)。扭曲的金屬弧線結構(Twist-arc structures),利用兩邊金屬弧線之耦合,使其在電場x、y偏振下之共振有紅、藍位移之現象產生,分別有低、高能階之模態差異,也因為左右兩邊金屬弧線有高度差異,使其在線性偏振下有相位延遲之現象,造成在左右旋光態峰值位移,展現出了較強的圓二色性之數值,接著也利用奈米球鏡微影術確實製程出了扭曲的金屬弧線結構,對於在實驗量測上之趨勢與模擬相符,當由空氣中量測轉換成在水中量測樣品,由於金屬結構上下所看到的折射率相近,導致基板對結構下的影響大大的減少,對於在圓二色性上的數值也有所提升。量測手性分子的選擇為半胱胺酸(cysteine),由於在波長950(nm)、800(nm)下都有光學親手性增益(Optical Chirality Enhancement)之分布,在實驗量測上也確實量測出L-cysteine及D-cysteine造成的訊號差異,利用圓二色性總和(sum CD)之方法,也明顯找出對於不同手性分子下的訊號差異。
We fabricated of twist-arc structures using Nanospherical-Lens Lithography (NLL), and twist-arc structures are resonantly coupled, and the phase delay on the linear polarization is caused by the difference in the height of the metal arcs on both side, so the transmission of RCP and LCP are huge difference. This phenomenon is called the Circular Dichroism (CD), when the transmission of RCP and LCP are difference. Optical chirality enhancement (OCE) helps to distinguish regions with different handedness of the local field. For bio-sensing, it effectively resolves mirror-symmetric enantiomers. With Finite Difference Time Domain (FDTD) simulations, we can discover the signal of chiral molecule will be enhanced on the positive and negative structures. However, in experiment data, we did find that the signals of the two kinds of molecules are difference.
〔1〕Liu, Na, and Harald Giessen. "Coupling effects in optical metamaterials." Angewandte Chemie International Edition 49.51 (2010): 9838-9852.
〔2〕Menzel, Christoph, Carsten Rockstuhl, and Falk Lederer. "Advanced Jones calculus for the classification of periodic metamaterials." Physical Review A 82.5 (2010): 053811.
〔3〕Liu, Na, et al. "Stereometamaterials." Nature Photonics 3.3 (2009): 157.
〔4〕Wang, Zuojia, et al. "Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications." Nanotechnology 27.41 (2016): 412001.
〔5〕Liu, Yongmin, and Xiang Zhang. "Metamaterials: a new frontier of science and technology." Chemical Society Reviews 40.5 (2011): 2494-2507.
〔6〕Zhao, Rongkuo, Thomas Koschny, and Costas M. Soukoulis. "Chiral metamaterials: retrieval of the effective parameters with and without substrate." Optics express 18.14 (2010): 14553-14567.
〔7〕Lipkin, Daniel M. "Existence of a new conservation law in electromagnetic theory." Journal of Mathematical Physics 5.5 (1964): 696-700.
〔8〕Tang, Yiqiao, and Adam E. Cohen. "Optical chirality and its interaction with matter." Physical review letters 104.16 (2010): 163901.
〔9〕Zhao, Yang, et al. "Chirality detection of enantiomers using twisted optical metamaterials." Nature communications 8 (2017): 14180.
〔10〕Hendry, Euan, et al. "Ultrasensitive detection and characterization of biomolecules using superchiral fields." Nature nanotechnology 5.11 (2010): 783.
〔11〕Schäferling, Martin, et al. "Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures." Physical Review X 2.3 (2012): 031010.
〔12〕Mur, Gerrit. "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations." IEEE transactions on Electromagnetic Compatibility 4 (1981): 377-382.
〔13〕Berenger, Jean-Pierre. "A perfectly matched layer for the absorption of electromagnetic waves." Journal of computational physics 114.2 (1994): 185-200
〔14〕程雋 "電磁波理論" 文笙書局 (2014)
〔15〕Johnson Jr, W. Curtis. "Secondary structure of proteins through circular dichroism spectroscopy." Annual review of biophysics and biophysical chemistry 17.1 (1988): 145-166.
〔16〕Berenger, Jean-Pierre. "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves." Journal of computational physics 127.2 (1996): 363-379
〔17〕吳民耀, & 劉威志. (2006). 表面電漿子理論與模擬. 物理雙月刊, 28(2), 486-496.
〔18〕邱國斌, & 蔡定平. (2006). 金屬表面電漿簡介. 物理雙月刊, 28(2), 472-485.
〔19〕曾賢德. "金奈米粒子的表面電漿共振特性: 耦合, 應用與樣品製作." 物理雙月刊 32.2 (2010): 126-135.
〔20〕Zhao, R., et al. "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index." Physical Review B 83.3 (2011): 035105.
〔21〕Li, Zhaofeng, et al. "Chiral metamaterials with negative refractive index based on four “U” split ring resonators." Applied Physics Letters 97.8 (2010): 081901.
〔22〕Condon, E. U. "Theories of optical rotatory power." Reviews of modern physics 9.4 (1937): 432.
〔23〕Decker, M., Ruther, M., Kriegler, C. E., Zhou, J., Soukoulis, C. M., Linden, S., & Wegener, M. (2009). Strong optical activity from twisted-cross photonic metamaterials. Optics letters, 34(16), 2501-2503.
〔24〕Fedotov, V. A., et al. "Asymmetric propagation of electromagnetic waves through a planar chiral structure." Physical review letters 97.16 (2006): 167401.
〔25〕Poladian, L., et al. "Pure chiral optical fibres." Optics express 19.2 (2011): 968-980.
〔26〕Rodrigues, Sean P., et al. "Nonlinear imaging and spectroscopy of chiral metamaterials." Advanced Materials 26.35 (2014): 6157-6162.
〔27〕Liu, Na, et al. "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit." Nature materials 8.9 (2009): 758.
123
〔28〕Denkov, N., Velev, O., Kralchevski, P., Ivanov, I., Yoshimura, H., & Nagayama, K. (1992). Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 8(12), 3183-3190.
〔29〕Ormonde, A. D., Hicks, E. C., Castillo, J., & Van Duyne, R. P. (2004). Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV− Visible Extinction Spectroscopy. Langmuir, 20(16), 6927-6931.
〔30〕Wu, Wei, et al. "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars." Nanotechnology 18.48 (2007): 485302.
〔31〕Wu, Wei, et al. "Fabrication of large area periodic nanostructures using nanosphere photolithography." Nanoscale research letters 3.10 (2008): 351.
〔32〕Fredriksson, Hans, et al. "Hole–mask colloidal lithography." Advanced Materials 19.23 (2007): 4297-4302.
〔33〕Gwinner, Michael Christian, et al. "Periodic Large‐Area Metallic Split‐Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography." Small 5.3 (2009): 400-406.
〔34〕Aslaksen, M. A., Romarheim, O. H., Storebakken, T., & Skrede, A. (2006). Evaluation of content and digestibility of disulfide bonds and free thiols in unextruded and extruded diets containing fish meal and soybean protein sources. Animal feed science and technology, 128(3-4), 320-330.
〔35〕Gortner, R. A., and W. F. Hoffman. "l‐Cystine." Organic Syntheses (1941): 39-39.