簡易檢索 / 詳目顯示

研究生: 何彥廷
He, Yen-Ting
論文名稱: 固態鎂碳離子電池充放電機制研究
A Study on Charge-Discharge Properties of Magnesium-Carbon Ion Solid-State Battery
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 86
中文關鍵詞: 鎂電池固態電解質天然鎂鹽礦離子導電率充放電
外文關鍵詞: Magnesium battery, Solid-state electrolyte, Natural ore, Charge-Discharge
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今商用電池鋰電解液具有汙染性,且會在充放電過程中於負極上生成樹枝狀晶析出,影響電池使用的安全性。本研究以鎂離子電池為主要研究方向,可以有效降低電池成本,同時提升電池的安全性。固態電解質相較於有機液態電解質擁有更高的熱穩定性,然而固態離子材料於室溫條件下,離子導電率無法達到電解質使用需求,因而限制固態電池的應用。本研究選擇天然鎂鹽礦作為高離子導電率材料,並以濺鍍純鎂膜作為電池電極,並搭配碳黑電極,藉由組裝電池測試,進而探討電化學效能及其充放電機制。
    再者,以天然鎂鹽礦作為固態電解質材料,其(001)晶面層間所含之結晶水可形成陽離子通道,幫助離子於材料中傳導,在常溫下即擁有良好的離子導電率。研究中將天然鎂鹽礦材料以不同製備方式製成複合高分子軟膜 (Bentonite Cloth Deposition, BCD礦布膜)與壓錠 (Ingot)兩種不同型態的電解質分別進行測試。由XRD分析中發現(001)訊號峰的偏移,表示經由充放電後層間因陽離子的缺失,造成層間距的縮減,導致固態電池充放電表現逐漸衰退。本研究將固態電解質導入Mg-C電池系統,在乾鎂定電流充放電測試中,BCD礦布膜因其可撓曲性而容易與電極貼附,擁有較佳的放電容量,其中以0.01 mA充放電電流最佳。高電壓測試中,電解質與電極表面間形成明顯可見的鎂阻斷層,經由交流阻抗分析結果顯示此阻斷層的出現使介面電阻顯著提升,不利鎂離子於電極材料表面嵌脫,導致乾鎂電池電容量逐漸降低。本研究將天然鎂鹽礦製備成良好的固態元件,且其充放電效能確認此固態電解質於室溫下可進行多次充放,實現二次鎂電池固態電解質應用潛力。

    Nowadays the electrolyte of commercial lithium battery is polluting, and easy to form dendrites structure on the negative electrode during charging and discharging, which affects the safety of using battery. In this study, magnesium ion battery is the main research topic, which can effectively reduce the cost of the battery and improve the safety of the battery. Solid-state electrolytes have higher thermal stability than organic liquid electrolytes. In this study, natural magnesium ore was selected as the high ion conductivity material. The sputtering magnesium film and carbon black were the electrodes of this battery and discussed the electrochemical performance and charging-discharging mechanism.
    The natural magnesium ore is used as the solid-state electrolyte, and the layered water between crystallographic planes help ions to conduct in the material and has good ionic conductivity at room temperature. In the study, the natural magnesium ore was tested into two different types of electrolytes: Bentonite Cloth Deposition (BCD) and Ingot. The signal shifting of the (001) crystallographic plane’s peak indicates the absence of cations between the layers after charged and discharged, resulting in a gradual decline in the charging-discharging performance. In the constant current charge and discharge test, the BCD mineral film was easily attached to the electrode due to its flexibility, so it had a better discharge capacity. In the high voltage test, a visible magnesium blocking layer is formed between the electrolyte and the surface of the electrode. The results of the AC impedance analysis show that the occurrence of the blocking layer significantly increased the interface resistance, which limit the insertion and extraction of magnesium ions into/from electrode, decreasing the capacity of Mg solid-state battery. Finally, natural magnesium ore was served as a good solid-state electrolyte, and its charging-discharging performance confirmed that the solid-state battery could be charged and discharged multiple times at room temperature, realizing the potential application of secondary magnesium solid-state battery.

    中文摘要 Ⅰ 英文摘要 Ⅲ 致謝 XIV 總目錄 XVI 圖目錄 XIX 表目錄 XXII 第一章 前言 1 第二章 文獻回顧 3 2-1 二次離子電池 3 2-2 鎂離子二次電池 4 2-3 電解質發展及原理 5 2-3-1 鋰離子液態電解質 6 2-3-2 鋰離子固態高分子電解質 8 2-3-3 鋰離子無機固態電解質 9 2-3-4 離子超導體固態電解質特性 9 2-4 離子固態導體之離子傳導活化能理論 10 2-5 天然鎂礦岩結構 11 2-6 濺鍍製程鎂金屬電極 12 2-7 研究目的 13 第三章 實驗步驟與方法 17 3-1 固態電解質元件製備 17 3-2 碳黑攪漿塗佈負電極與純鎂正電極製備 18 3-3 材料性質分析 18 3-3-1 X-ray繞射分析 18 3-3-2 掃描式電子顯微鏡與能量分散光譜儀分析 19 3-3-3 傅立葉轉換紅外線光譜分析 19 3-4 電池組裝 19 3-5 電化學阻抗分析 20 3-6 循環充放電測試 22 第四章 結果與討論 28 4-1 濺鍍鎂電極材料性質探討 28 4-1-1 電極表面形貌特性分析 28 4-1-2 電極材料晶體結構分析 28 4-1-3 濕鎂碳電池充放電效能 28 4-1-4 濕鎂碳18650電池循環充放電效能 30 4-2 天然鎂鹽礦離子材料性質探討 31 4-2-1 粉末表面形貌特性分析 31 4-2-2 充放電前後晶體結構特性 31 4-2-3 充放電前後FTIR光學特性 32 4-2-4 交流組抗分析與離子導電率探討 33 4-3 乾鎂碳電池定電流充放電效能探討 34 4-3-1 Mg/ Ingot/ C壓錠固態電解質充放電特性 34 4-3-2 Mg/ BCD/ C複合高分子固態電解質充放電特性研究 35 4-3-3 Mg/ BCD/ C不同充放電電流特性研究 36 4-3-4 鎂電極侵蝕層表面微觀形貌與元素成份分析 37 4-4 乾鎂碳電池定電壓充電/定電流放電特性 38 4-4-1 固態元件之定電壓充電與定電流充電比較 38 4-4-2 Mg/ BCD/ C 5V定電壓充電/ 0.01 mA放電 39 4-4-3 鎂電極阻斷層特性分析 40 4-4-4 交流阻抗分析與介面電阻探討 41 4-4-5 乾鎂碳電池鎂阻斷層成型機制 41 4-4-6 Mg/ BCD/ C乾鎂碳18650電池循環充放電測試 42 第五章 結論 82 參考文獻 83

    [1] Y. Nishi, "Lithium ion secondary batteries; past 10 years and the future", J. Power Sources, 100 (1), 101-106, 2001.
    [2] Energy Department Anounces Battery Recycling Prize and Battery Recyling R&D Center, 2019.
    [3] W. Li, J. R. Dahn, D.S. Wainwright, "Rechargeable lithium batteries with aqueous electrolytes", "Science", 264 (5162), 1115-1118, 1994.
    [4] Paul Voelker, Thermo Fisher Scientific, Sunnyvale, Calif., "Trace Degradation Analysis of Lithium-Ion Battery Components", R&D Magazine, 2016.
    [5] D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O.Mizrahi, O. Chusid, M. Brunelli, "Progress in rechargeable magnesium battery technology", Advanced Materials, 19 (23), 4260-4267, 2007.
    [6] Hyun Deog Yoo, Ivgeni Shterenberg, Yosef Gofer, Gregory Gershinsky, Nir Pour and Doron Aurbach, "Mg rechargeable batteries: An on-going challenge" Energy & Environmental Science, 6, 2265-2279, 2013.
    [7] Canepa P, Sai Gautan, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G, "Odyssey of Multivelent Cathode Materials: Open Questions and Future Challenges", Chemical Reviews, 117 (5), 4287-4341, 2017.
    [8] Hee Soo Kim, Timothy S. Arthur, Gary D. Allred, Jaroslav Zajicek, John G. Newman, Alexander E. Rodnyansky, Allen G. Oliver, William C. Boggess & John Muldoon,"Structrue and compatibility of a magnesium electrolyte with a sulphur cathode", Nature Communication 2, 427, 2011.
    [9] Dan-Thien Nguyen, Seung-Wan Song,"Magnesium stannide as a high-capacity anode for magnesium-ion batteries", J. Power Soureces, Volume 368, 11-17, 2017.
    [10] NREL,"NREL Research Overcome Major Technical Obstacles in Magnesium-Metal Batteries", 2018.
    [11] PV magzine Germany,"E-Magic: Magnesium batteries for a post lithium age", 2019.
    [12] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, "Prototype systems for rechargeable magnesium batteries", Nature, 407, 724-727, 2000.
    [13] K. L. Huang, Z. X. Wang and S. Q. Liu, Lithium-ion Batteries - Principles and Key Technologies, Wunan Book Co., Ltd, 2010.
    [14] 許朝政,固態鎂基鹽質離子導體材料特性與充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國107年。
    [15] Feng Zheng, MasashiKotobuki, Man On Lai, Li Lu, "Review on solid state electrolyte for all-solid-state lithium-ion batteries", J. Power Sources, Volume 389, 198-213, 2018.
    [16] F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. Wang, "High-Volatage aqueous magnesium ion batteries", ACS Central Science, 3 (10), 1121-1128, 2017.
    [17] E. R. Logan, Erin M. Tonita, K. L. Gering, Jing Li, Xiaowei Ma, L. Y. Beaulieu, J. R. Dahn, "A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters", Journal of The Electrochemical Society, 165 (2) A21-A30, 2018.
    [18] Andreas Nyman, Mårten Behm, Göran Lindbergh, "Electrochemical characterisation and modeling of the mass transport phenomena in LiPF6-EC-EMC electrolyte", Electrochimica Acta, Volume 53, Issue 22, 6356-6365, 2008.
    [19] J. Yang, S. C. Wang, X. Y. Zhou, J. Xie, "Electrochemiacal behaviors of functionalized carbon nanotubes in LiPF6/EC + DMC electrolyte", International Journal of Electrochemical Science, 7, 6118-6126, 2012.
    [20] Qi Li, Juner Chen, Lei Fan, Xueqian Kong, Yingying Lu, "Progress in electrolytes for rechargeable Li-based batteries and beyond", Green Energy & Environment, Volume 1, Isuue 1, 18-42, 2016.
    [21] F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, 394 (6692), 1998.
    [22] R. Murugan, V. Thangadurai, W. Weppner, "Fast lithium ion conduction in garnet-type Li7La3Zr2O12", Angewandte Chemie international Edition, 46 (41), 7778-7781, 2007.
    [23] D. Liu, Wen Zhu, Zimin Feng, A. Guerfi, "Recent progress in sulfide-based solid electrolytes for Li-ion batteries", Materials Science and Engineering B, 2016.
    [24] Keith E.Johnson, "What's an ionic liquid? The Electrochemical Society Interface", spring, 38-40, 2007.
    [25] Ionic Conductivity and Solid Electrolytes (http://staff.ustc.edu.cn/~ychzhu/Solid State Chemistry/04-2-Ionic%20Conductivity.pdf)
    [26] 趙峰,錢新明,汪爾康,董紹俊,"離子導電聚合物電解質的研究",2002。
    [27] Bergaya F. and Lagaly G.,"Origin of Cation Exchange Capacity", Handbook of Clay Science, 2nd Edition, 1 & 2, 334, 2013.
    [28] 洪嘉政,3D雷射積層與熱蒸鍍薄膜之鎂負極顯微組織與充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國105年。
    [29] Liu Zhirong, Md. Azhar Uddin, Sun Zhanxue,"Na-bentonite and Cu(Ⅱ)-loaded Na-bentonite", ELSEVIER, 79, Issue 5, 2011, 1013-1016.
    [30] D. V. Ribeiro, J. C. C. Abrantes, "Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach", ELSEVIER, 111, 2016, 98-104.
    [31] Byoung-Yong Chang and Su-Moon Park, "Electrochmical Impedance Spectroscopy", Annual Review of Analytical Chemisty, 3, 2010, 207-229.

    無法下載圖示 校內:2024-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE