| 研究生: |
何彥廷 He, Yen-Ting |
|---|---|
| 論文名稱: |
固態鎂碳離子電池充放電機制研究 A Study on Charge-Discharge Properties of Magnesium-Carbon Ion Solid-State Battery |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鎂電池 、固態電解質 、天然鎂鹽礦 、離子導電率 、充放電 |
| 外文關鍵詞: | Magnesium battery, Solid-state electrolyte, Natural ore, Charge-Discharge |
| 相關次數: | 點閱:40 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今商用電池鋰電解液具有汙染性,且會在充放電過程中於負極上生成樹枝狀晶析出,影響電池使用的安全性。本研究以鎂離子電池為主要研究方向,可以有效降低電池成本,同時提升電池的安全性。固態電解質相較於有機液態電解質擁有更高的熱穩定性,然而固態離子材料於室溫條件下,離子導電率無法達到電解質使用需求,因而限制固態電池的應用。本研究選擇天然鎂鹽礦作為高離子導電率材料,並以濺鍍純鎂膜作為電池電極,並搭配碳黑電極,藉由組裝電池測試,進而探討電化學效能及其充放電機制。
再者,以天然鎂鹽礦作為固態電解質材料,其(001)晶面層間所含之結晶水可形成陽離子通道,幫助離子於材料中傳導,在常溫下即擁有良好的離子導電率。研究中將天然鎂鹽礦材料以不同製備方式製成複合高分子軟膜 (Bentonite Cloth Deposition, BCD礦布膜)與壓錠 (Ingot)兩種不同型態的電解質分別進行測試。由XRD分析中發現(001)訊號峰的偏移,表示經由充放電後層間因陽離子的缺失,造成層間距的縮減,導致固態電池充放電表現逐漸衰退。本研究將固態電解質導入Mg-C電池系統,在乾鎂定電流充放電測試中,BCD礦布膜因其可撓曲性而容易與電極貼附,擁有較佳的放電容量,其中以0.01 mA充放電電流最佳。高電壓測試中,電解質與電極表面間形成明顯可見的鎂阻斷層,經由交流阻抗分析結果顯示此阻斷層的出現使介面電阻顯著提升,不利鎂離子於電極材料表面嵌脫,導致乾鎂電池電容量逐漸降低。本研究將天然鎂鹽礦製備成良好的固態元件,且其充放電效能確認此固態電解質於室溫下可進行多次充放,實現二次鎂電池固態電解質應用潛力。
Nowadays the electrolyte of commercial lithium battery is polluting, and easy to form dendrites structure on the negative electrode during charging and discharging, which affects the safety of using battery. In this study, magnesium ion battery is the main research topic, which can effectively reduce the cost of the battery and improve the safety of the battery. Solid-state electrolytes have higher thermal stability than organic liquid electrolytes. In this study, natural magnesium ore was selected as the high ion conductivity material. The sputtering magnesium film and carbon black were the electrodes of this battery and discussed the electrochemical performance and charging-discharging mechanism.
The natural magnesium ore is used as the solid-state electrolyte, and the layered water between crystallographic planes help ions to conduct in the material and has good ionic conductivity at room temperature. In the study, the natural magnesium ore was tested into two different types of electrolytes: Bentonite Cloth Deposition (BCD) and Ingot. The signal shifting of the (001) crystallographic plane’s peak indicates the absence of cations between the layers after charged and discharged, resulting in a gradual decline in the charging-discharging performance. In the constant current charge and discharge test, the BCD mineral film was easily attached to the electrode due to its flexibility, so it had a better discharge capacity. In the high voltage test, a visible magnesium blocking layer is formed between the electrolyte and the surface of the electrode. The results of the AC impedance analysis show that the occurrence of the blocking layer significantly increased the interface resistance, which limit the insertion and extraction of magnesium ions into/from electrode, decreasing the capacity of Mg solid-state battery. Finally, natural magnesium ore was served as a good solid-state electrolyte, and its charging-discharging performance confirmed that the solid-state battery could be charged and discharged multiple times at room temperature, realizing the potential application of secondary magnesium solid-state battery.
[1] Y. Nishi, "Lithium ion secondary batteries; past 10 years and the future", J. Power Sources, 100 (1), 101-106, 2001.
[2] Energy Department Anounces Battery Recycling Prize and Battery Recyling R&D Center, 2019.
[3] W. Li, J. R. Dahn, D.S. Wainwright, "Rechargeable lithium batteries with aqueous electrolytes", "Science", 264 (5162), 1115-1118, 1994.
[4] Paul Voelker, Thermo Fisher Scientific, Sunnyvale, Calif., "Trace Degradation Analysis of Lithium-Ion Battery Components", R&D Magazine, 2016.
[5] D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O.Mizrahi, O. Chusid, M. Brunelli, "Progress in rechargeable magnesium battery technology", Advanced Materials, 19 (23), 4260-4267, 2007.
[6] Hyun Deog Yoo, Ivgeni Shterenberg, Yosef Gofer, Gregory Gershinsky, Nir Pour and Doron Aurbach, "Mg rechargeable batteries: An on-going challenge" Energy & Environmental Science, 6, 2265-2279, 2013.
[7] Canepa P, Sai Gautan, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G, "Odyssey of Multivelent Cathode Materials: Open Questions and Future Challenges", Chemical Reviews, 117 (5), 4287-4341, 2017.
[8] Hee Soo Kim, Timothy S. Arthur, Gary D. Allred, Jaroslav Zajicek, John G. Newman, Alexander E. Rodnyansky, Allen G. Oliver, William C. Boggess & John Muldoon,"Structrue and compatibility of a magnesium electrolyte with a sulphur cathode", Nature Communication 2, 427, 2011.
[9] Dan-Thien Nguyen, Seung-Wan Song,"Magnesium stannide as a high-capacity anode for magnesium-ion batteries", J. Power Soureces, Volume 368, 11-17, 2017.
[10] NREL,"NREL Research Overcome Major Technical Obstacles in Magnesium-Metal Batteries", 2018.
[11] PV magzine Germany,"E-Magic: Magnesium batteries for a post lithium age", 2019.
[12] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, "Prototype systems for rechargeable magnesium batteries", Nature, 407, 724-727, 2000.
[13] K. L. Huang, Z. X. Wang and S. Q. Liu, Lithium-ion Batteries - Principles and Key Technologies, Wunan Book Co., Ltd, 2010.
[14] 許朝政,固態鎂基鹽質離子導體材料特性與充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國107年。
[15] Feng Zheng, MasashiKotobuki, Man On Lai, Li Lu, "Review on solid state electrolyte for all-solid-state lithium-ion batteries", J. Power Sources, Volume 389, 198-213, 2018.
[16] F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. Wang, "High-Volatage aqueous magnesium ion batteries", ACS Central Science, 3 (10), 1121-1128, 2017.
[17] E. R. Logan, Erin M. Tonita, K. L. Gering, Jing Li, Xiaowei Ma, L. Y. Beaulieu, J. R. Dahn, "A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters", Journal of The Electrochemical Society, 165 (2) A21-A30, 2018.
[18] Andreas Nyman, Mårten Behm, Göran Lindbergh, "Electrochemical characterisation and modeling of the mass transport phenomena in LiPF6-EC-EMC electrolyte", Electrochimica Acta, Volume 53, Issue 22, 6356-6365, 2008.
[19] J. Yang, S. C. Wang, X. Y. Zhou, J. Xie, "Electrochemiacal behaviors of functionalized carbon nanotubes in LiPF6/EC + DMC electrolyte", International Journal of Electrochemical Science, 7, 6118-6126, 2012.
[20] Qi Li, Juner Chen, Lei Fan, Xueqian Kong, Yingying Lu, "Progress in electrolytes for rechargeable Li-based batteries and beyond", Green Energy & Environment, Volume 1, Isuue 1, 18-42, 2016.
[21] F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, 394 (6692), 1998.
[22] R. Murugan, V. Thangadurai, W. Weppner, "Fast lithium ion conduction in garnet-type Li7La3Zr2O12", Angewandte Chemie international Edition, 46 (41), 7778-7781, 2007.
[23] D. Liu, Wen Zhu, Zimin Feng, A. Guerfi, "Recent progress in sulfide-based solid electrolytes for Li-ion batteries", Materials Science and Engineering B, 2016.
[24] Keith E.Johnson, "What's an ionic liquid? The Electrochemical Society Interface", spring, 38-40, 2007.
[25] Ionic Conductivity and Solid Electrolytes (http://staff.ustc.edu.cn/~ychzhu/Solid State Chemistry/04-2-Ionic%20Conductivity.pdf)
[26] 趙峰,錢新明,汪爾康,董紹俊,"離子導電聚合物電解質的研究",2002。
[27] Bergaya F. and Lagaly G.,"Origin of Cation Exchange Capacity", Handbook of Clay Science, 2nd Edition, 1 & 2, 334, 2013.
[28] 洪嘉政,3D雷射積層與熱蒸鍍薄膜之鎂負極顯微組織與充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國105年。
[29] Liu Zhirong, Md. Azhar Uddin, Sun Zhanxue,"Na-bentonite and Cu(Ⅱ)-loaded Na-bentonite", ELSEVIER, 79, Issue 5, 2011, 1013-1016.
[30] D. V. Ribeiro, J. C. C. Abrantes, "Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach", ELSEVIER, 111, 2016, 98-104.
[31] Byoung-Yong Chang and Su-Moon Park, "Electrochmical Impedance Spectroscopy", Annual Review of Analytical Chemisty, 3, 2010, 207-229.
校內:2024-08-14公開