簡易檢索 / 詳目顯示

研究生: 施文豪
Shih, Wen-Hao
論文名稱: 臨界長寬比稜柱在不同入射角及隨機串聯排列下之熱傳分析
Analyzing Heat Transfer for Critical Aspects Ratio Prism at Various Incident Angles and Random Tandem Configuration
指導教授: 李崇綱
Li, Chung-Gang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 95
中文關鍵詞: 強制對流有限稜柱臨界長寬比紐塞數
外文關鍵詞: Forced convection, Finite prism, Critical aspect ratio, Nusselt number
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用直接數值模擬(DNS)方法,深入探討了在低雷諾數條件下,等溫有限稜柱的流場和溫度場特性。我們採用了適用於大規模平行計算的正交網格結構,結合沉浸邊界法(IBM)來處理具有入射角的複雜幾何形狀,考慮了長寬比從1到7的稜柱,其中長寬比定義為稜柱高度與特徵長度(稜柱邊長D)之比值,並對模擬結果進行了驗證和比對。通過分析局部和平均紐塞數,以及利用Q-criterion和主流負方向速度來表示流場的回流情況,我們詳細研究了不同長寬比和入射角下流場的特性。在最後一章節,本文對串聯式稜柱的散熱分析進行了討論。根據模擬的分析結果條列出以下結論。
    研究表明,隨著長寬比 (Aspect Ratio,AR) 的增加,三維流動結構的強度相應增強。特別是在長寬比為3時,流場處於穩定和非穩定之間的過渡狀態。棱柱後方的流場結構與尾流渦流密切相關,局部紐塞數較高的區域主要分佈在棱柱中央高度的位置,這是卡門渦流對流場產生最大影響的地方。除此之外,當長寬比為3時,卡門渦流迅速形成,從而導致平均努塞特數的增加,這表明卡門渦流對於強制對流散熱具有積極影響,同時也暗示長寬比為3可能是臨界長寬比。此外,針對稜柱的入射角研究顯示,在30°和45°的入射角下,稜柱的散熱效果能顯著提升,平均紐塞數提高了13%。在串聯式棱柱的流場中,當距離比小於5時,即S/D ≤ 5 (其中S為稜柱與稜柱之間的長度)時,流場呈現穩定對稱的特性;然而,當S/D超過5時,流場開始變得不穩定,並在尾流處出現擺動的現象。最後,在串聯式稜柱的散熱設計中,選擇具有入射角的前方稜柱能夠使整體平均紐塞數提升約19%,從而增強散熱效果。

    The present study utilizes Direct Numerical Simulation (DNS) to delve into the flow and temperature field characteristics of finite rectangular prisms under low Reynolds number conditions and isothermal settings. We employ an orthogonal grid structure suitable for large-scale parallel computation and incorporate the Immersed Boundary Method (IBM) to handle complex geometric shapes with incident angles, with validation and comparison of simulation results.
    Through analysis of local and average Nusselt numbers, as well as the use of Q-criterion and mainstream negative velocity to denote flow recirculation, we extensively investigate the characteristics of the flow field under different aspect ratios and incident angles, con-cluding with a discussion on the heat dissipation of tandem prisms. Our findings indicate that with increasing aspect ratio, the strength of the three-dimensional flow structures cor-respondingly increases. Particularly at an aspect ratio of 3, the flow field transitions be-tween stable and unstable states. The flow field structure behind the prism is closely relat-ed to the presence of wake vortices, with high local Nusselt numbers primarily concentrat-ed in the central region of the prism, where the Karman vortex has the greatest impact on the flow field. Moreover, the rapid formation of Karman vortices at an aspect ratio of 3 leads to an increase in the average Nusselt number, suggesting a positive influence of Karman vortices on forced convection heat dissipation and implying that an aspect ratio of 3 may be a critical value.
    Additionally, optimization of heat dissipation is achievable through incident angles of 30° and 45° for the prisms, resulting in a 13% increase in the average Nusselt number. While tandem prism flow exhibits stable symmetric characteristics at S/D ≤ 5, instability and os-cillations occur when S/D exceeds 5. In the design of tandem prism heat dissipation, se-lecting prisms with incident angles can enhance the overall average Nusselt number and subsequently improve heat dissipation efficiency.

    摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號說明 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關文獻回顧 2 第二章 物理模式 8 2.1 物理模型種類 8 2.1.1 單一稜柱模型 10 2.1.2 隨機串聯式稜柱模型 10 2.2 分析假設與統御方程式 14 2.3 邊界條件設定 15 2.3.1 初始條件 16 2.3.2 入口條件 16 2.3.3 邊界條件 16 2.3.4 壁面條件 16 第三章 數值方法 17 3.1 .網格模型與全域沉浸邊界法 17 3.1.1 BCM(Building Cube Method) 19 3.1.2 沉浸邊界法 (Immersed Boundary Method) 19 3.2 全域統一解法 23 3.3 Roe scheme 25 3.4 預處理法Preconditioning method 31 3.5 LUSGS法 38 3.6 全域非反射性邊界 40 4第四章 數值驗證與結果討論 47 4.1 收斂性分析 47 4.1.1 網格獨立性 47 4.1.2 時間步階獨立性 49 4.1.3 平行化高性能運算獨立性 51 4.2 平均紐森數驗證 54 4.3 單一稜柱紐塞數分析 56 4.3.1 臨界長寬比討論與分析 57 4.3.2 入射角對於臨界長寬比熱傳導性能的影響 65 4.4 隨機串聯式紐塞數分析 68 4.4.1 串聯式模型的尾流分析 69 4.4.2 串聯式模型的紐塞數分析 69 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 72 參考文獻 73

    [1] J. M. Weiss, and W. A. Smith, “Preconditioning applied to variable and constant density flows,” AIAA Journal, vol. 33, no. 11, pp. 2050–2057, 1995.
    [2] C. G. Li, “A compressible solver for the laminar–turbulent transition in natural convec-tion with high temperature differences using implicit large eddy simulation,” Interna-tional Communications in Heat and Mass Transfer, vol. 117, p. 104721, 2020.
    [3] B. Ren, C. G. Li, and M. Tsubokura, “Direct numerical simulation of vertically heated natural convection over 3D irregular roughness,” J. Comput. Fluids, vol. 257, p. 105866, 2023.
    [4] B. Ren, C. G. Li, and M. Tsubokura, “The effects of irregular roughness with different surface power spectrums on the heat transfer of natural convection in enclosures,” In-ternational Communications in Heat and Mass Transfer, vol. 141, p. 106581, 2023.
    [5] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput Phys, vol. 135, no. 2, pp. 250–258, 1997.
    [6] K. H. Kim and C. Kim, “Accurate, efficient and monotonic numerical methods for mul-ti-dimensional compressible flows: Part II: Multi-dimensional limiting process,” J. Comput. Phys, vol. 208, no. 2, pp. 570–615, 2005.
    [7] S. Taneda, “An experimental study on the structure of the vortex street behind a circular cylinder of finite length,” Research Report of Institute of Applied Mechanics, pp. 131–142, 1952.
    [8] H.F. Wang, Y. Zhou, C.K. Chan, W. O. Wong, and K.S. Lam, “Flow structure around a finite-length square prism.,”. In Proceedings of the 15 th Australasian Fluid Mechanics Conference, Sydney, Australia, pp. 13–17, 2004.
    [9] H. F. Wang and Y. zhou, “The finite-length square cylinder near wake,” J Fluid Mech, vol. 638, pp. 453–490, 2009.
    [10] B. L. da Silva, R. Chakravarty, D. Sumner, and D. J. Bergstrom, “Aerodynamic forces and three-dimensional flow structures in the mean wake of a surface-mounted finite-height square prism,” Int J Heat Fluid Flow, vol. 83, p. 108569, 2020.
    [11] T. Uffinger, I. Ali, and S. Becker, “Experimental and numerical investigations of the flow around three different wall-mounted cylinder geometries of finite length,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 119, pp. 13–27, 2013.
    [12] A. K. Saha, “Unsteady flow past a finite square cylinder mounted on a wall at low Reynolds number,” Comput Fluids, vol. 88, 2013.
    [13] D. Sumner, N. Rostamy, D. J. Bergstrom, and J. D. Bugg, “Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism,” Int J Heat Fluid Flow, vol. 65, pp. 1–20, 2017.
    [14] S. Okamoto and N. Uemura, “Effect of rounding side-corners on aerodynamic forces and turbulent wake of a cube placed on a ground plane,” Exp Fluids, vol. 11, no. 1, pp. 58–64, 1991.
    [15] A. Yakhot, H. Liu, and N. Nikitin, “Turbulent flow around a wall-mounted cube: A di-rect numerical simulation,” Int J Heat Fluid Flow, vol. 27, no. 6, pp. 994–1009, 2006.
    [16] I. P. Castro and A. G. Robins, “The flow around a surface-mounted cube in uniform and turbulent streams,” J Fluid Mech, vol. 79, no. 2, pp. 307–335, 1977.
    [17] H. Sakamoto and M. Arie, “Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer,” J Fluid Mech, vol. 126, pp. 147–165, 1983.
    [18] D. Sumner, N. Rostamy, D. J. Bergstrom, and J. D. Bugg, “Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism,” Int J Heat Fluid Flow, vol. 65, pp. 1–20, 2017.
    [19] Z. Hosseini, J. A. Bourgeois, and R. J. Martinuzzi, “Large-scale structures in dipole and quadrupole wakes of a wall-mounted finite rectangular cylinder,” Exp Fluids, vol. 54, no. 9, p. 1595, 2013.
    [20] M. El Hassan, J. Bourgeois, and R. Martinuzzi, “Boundary layer effect on the vortex shedding of wall-mounted rectangular cylinder,” Exp Fluids, vol. 56, no. 2, p. 33, 2015.
    [21] S. Behera and A. K. Saha, “Characteristics of the flow past a wall-mounted finite-length square cylinder at low reynolds number with varying boundary layer thickness,” Jour-nal of Fluids Engineering, Transactions of the ASME, vol. 141, no. 6, 2019.
    [22] T. igarashi, “Characteristics of the Flow around a Square Prism,” Bulletin of JSME, vol. 27, no. 231, pp. 1858–1865, 1984.
    [23] V. Natarajan and M. K. Chyu, “Effect of Flow Angle-of-Attack on the Local Heat/Mass Transfer from a Wall-Mounted Cube,” J Heat Transfer, vol. 116, no. 3, pp. 552–560, 1994.
    [24] T. Igarashi, “Heat transfer from a square prism to an air stream,” Int J Heat Mass Transf, vol. 28, no. 1, pp. 175–181, Jan. 1985.
    [25] R. King and D. J. Johns, “Wake interaction experiments with two flexible circular cyl-inders in flowing water,” J Sound Vib, vol. 45, no. 2, pp. 259–283, 1976.
    [26] Ž. G. Kostić and S. N. Oka, “Fluid flow and heat transfer with two cylinders in cross flow,” Int J Heat Mass Transf, vol. 15, no. 2, pp. 279–299, 1972.
    [27] A. Valencia, “Numerical study of self-sustained oscillatory flows and heat transfer in channels with a tandem of transverse vortex generators,” Heat and Mass Transfer, vol. 33, no. 5–6, pp. 465–470, 1998.
    [28] A. Valencia, “Unsteady flow and heat transfer in a channel with a built-in tandem of rectangular cylinders,” Numeri Heat Transf A Appl, vol. 29, no. 6, pp. 613–623, 1996.
    [29] S. C. Yen, K. C. San, and T. H. Chuang, “Interactions of tandem square cylinders at low Reynolds numbers,” Exp Therm Fluid Sci, vol. 32, no. 4, pp. 927–938, 2008.
    [30] A. Sohankar and A. Etminan, “Forced‐convection heat transfer from tandem square cyl-inders in cross flow at low Reynolds numbers,” Int J Numer Methods Fluids, vol. 60, no. 7, pp. 733–751, 2009.
    [31] W. Fu, C. Li, W. Lin, and Y. Chen, “Roe scheme with preconditioning method for large eddy simulation of compressible turbulent channel flow,” Int J Numer Methods Fluids, vol. 61, no. 8, pp. 888–910, 200.
    [32] W.-S. Fu, C.-G. Li, C.-P. Huang, and J.-C. Huang, “An investigation of a high tem-perature difference natural convection in a finite length channel without Bossinesq as-sumption,” Int J Heat Mass Transf, vol. 52, no. 11–12, pp. 2571–2580, 2009.
    [33] C.-G. Li, M. Tsubokura, and K. Onishi, “Feasibility investigation of compressible direct numerical simulation with a preconditioning method at extremely low Mach numbers,” Int J Comut Fluid Dyn, vol. 28, no. 6–10, pp. 411–419, 2014.
    [34] JD Anderson, Hypersonic and high temperature gas dynamics. 1989.
    [35] K. Nakahashi and L. Kim, “Building-Cube Method for Large-Scale, High Resolution Flow Computations,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004.
    [36] K. Komatsu et al., “Parallel processing of the Building-Cube Method on a GPU plat-form,” Comput Fluids, vol. 45, no. 1, pp. 122–128, 2011.
    [37] M. D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, and M. Napolitano, “An im-mersed boundary method for compressible flows using local grid refinement,” J Com-put Phys, vol. 225, no. 2, pp. 2098–2117, 2007.
    [38] R. Ghias, R. Mittal, and H. Dong, “A sharp interface immersed boundary method for compressible viscous flows,” J Comput Phys, vol. 225, no. 1, pp. 528–553, 2007.
    [39] C. G. Li, R. Bale, W. H. Wang, and M. Tsubokura, “A sharp interface immersed boundary method for thin-walled geometries in viscous compressible flows,” Int J Mech Sci, vol. 253, p. 108401, 2023.
    [40] C. G. Li, M. Tsubokura, and R. Bale, “Framework for simulation of natural convection in practical applications,” International Communications in Heat and Mass Transfer, vol. 75, pp. 52–58, 2016.
    [41] J. M. Weiss and W. A. Smith, “Preconditioning applied to variable and constant density flows,” AIAA Journal, vol. 33, no. 11, pp. 2050–2057, 1995.
    [42] S. Yoon and A. Jameson, “Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations,” AIAA Journal, vol. 26, no. 9, pp. 1025–1026, 1988.
    [43] G. V. Candler, M. J. Wright, and J. D. McDonald, “Data-parallel lower-upper relaxation method for reacting flows,” AIAA Journal, vol. 32, no. 12, pp. 2380–2386, 1994.
    [44] W.-S. Fu, C.-G. Li, and C.-C. Tseng, “An investigation of a dual-reflection phenome-non of a natural convection in a three-dimensional horizontal channel without Bous-sinesq assumption,” Int J Heat Mass Transf, vol. 53, no. 7–8, pp. 1575–1585, 2010.
    [45] W.-S. Fu, C.-G. Li, C.-P. Huang, and J.-C. Huang, “An investigation of a high tem-perature difference natural convection in a finite length channel without Bossinesq as-sumption,” Int J Heat Mass Transf, vol. 52, no. 11–12, pp. 2571–2580, 2009.
    [46] D. Jespersen, T. Pulliam, P. Buning, D. Jespersen, T. Pulliam, and P. Buning, “Recent enhancements to overflow,” in 35th Aerospace Sciences Meeting and Exhibit, Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997.
    [47] N. Y. Gnedin, V. A. Semenov, and A. V. Kravtsov, “Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes,” J Comput Phys, vol. 359, pp. 93–105, 2018.
    [48] D. Zhang, L. Cheng, H. An, and M. Zhao, “Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers,” Physics of Fluids, vol. 29, no. 4, p. 045101, 2017.
    [49] G. M. Amdahl, “Validity of the single processor approach to achieving large scale com-puting capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer con-ference on - AFIPS ’67 (Spring), New York, New York, USA: ACM Press, 1967, p. 483.
    [50] R. Hilpert, “Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom,” For-schung auf dem Gebiete des Ingenieurwesens, vol. 4, no. 5, pp. 215–224, 1933.
    [51] M. C. Vidya, N. A. Beishuizen, and T. H. van der Meer, “Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000,” J Phys Conf Ser, vol. 745, p. 032018, 2016.

    無法下載圖示 校內:2026-08-13公開
    校外:2026-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE