| 研究生: |
許煌鑫 Syu, Huang-Sin |
|---|---|
| 論文名稱: |
強化時空與品質考量之自願性地理資訊架構發展 Enhanced Spatial-temporal and Quality architecture for Volunteered Geographic Information |
| 指導教授: |
洪榮宏
Hong, Jung-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | VGI 、資料品質 、時空因素品質描述元素 、基礎時空型別配套 |
| 外文關鍵詞: | VGI, Data quality, Spatial-temporal data, standardized |
| 相關次數: | 點閱:127 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年網際網路、行動裝置及巨量資料之發展帶動資訊產業之革命,顛覆了傳統資料蒐集、處理、流通及分享之模式。在Web 2.0所帶動之風潮下,一般使用者擁有更為便捷之工具來建立及分享資訊,產生例如群眾外包(crowdsourcing)等新一代的資訊運作機制。自願性地理資訊Volunteer Geographic Information,VGI)對過去由政府單位擔負資料產製及系統發展之模式帶來新的思維,借助群眾與社群之力量,可達成更為廣泛與更為即時圖資蒐集之成效,並可降低獲取空間資訊之成本。自願性地理資訊近年在物種調查、時空趨勢分析、救災資訊匯集,甚至地圖平台內容之更新上已累積大量之成果。由於資料來自於群眾,資料品質不但無法與傳統之專業資料相提並論,更可能發生品質不一之情形,廣泛蒐集之優勢反而可能成為正確決策之隱憂。有別於在最終分析階段面對各類資料之品質差異問題,本研究擬由強化資訊供應內容之觀點著手,透過標準化之手段,達成提升決策品質之目標。
本研究之主要策略為分析自願性地理資訊所必須具有之描述內容,經由時間、空間及品質之考量,設計為強化描述之標準化架構。此架構之內容須在資料建置時即決定,並內嵌於流通之資料格式中,如此將可在資訊分析時,透過其提供之資訊而具體掌握各類資料之差異,即令自願性地理資訊分由不同資料格式記錄,其成果仍可在決策者更為完整之了解下建立,避免錯誤之決策。本研究整理與分析VGI應用中常使用之流通格式,並規劃強化描述架構嵌入之策略及歸結其使用之限制。由於嵌入資訊之內容有所差異,本研究進一步探討資料剖析及品質評估之策略,並具體分析對於整體應用之影響。
相較於現行普遍採用之自願性地理資訊處理方式,本研究因應資料格式之特性而使流通資料「自動」隱含時空品質資訊,資訊雖然更為完整,但使用者不會感覺額外之工作負擔。在決策時,由於資料帶有考量之時間、空間與品質資訊等描述內容,更易彰顯各類資料之差異,使用者對於決策之品質將可建立更「正確」之評估。本研究之成果可突破自願性地理資訊應用中,資料提供者缺乏專業及決策者沒有品質評估基礎之兩大瓶頸。在此基礎下,未來之所有蒐集及流通之自願性地理資訊均將具有符合其本身特性之描述,可滿足更為多元之應用需求,尤其在巨量資料之分析上,透過此方式而蒐集之資料將成為更有價值之資源彙整機制。
VGI provides clear advantages of scalability, flexibility, efficiency and less spending to serve as an alternative approach for better understanding of the changing world. Despite of the advantages VGI can bring, data quality remains a difficult issue because VGI data is typically collected from general public without professional training and knowledge. Different from the major principles of the past research, we suggest a new approach to enhance the content of VGI data by adding necessary spatio-temporal and quality information into the VGI data before it is submitted. After examining the essential characteristics of VGI data, the framework of enhanced information is subdivided into four major categories: volunteer identification information, spatio-temporal information, positioning information and mission information. By including the enhanced information, the experiment shows this framework can not only provides a solid and consistent basis for establishing VGI data, but also successfully helps decision makers to effectively compare and analyze VGI data collected from different sources. The developed prototype system also demonstrates the additional required information can be collected automatically, which implies it will not increase volunteers’ loading or demand more training, but can effectively improve the potential use of VGI data. As we focus on the premier stage of VGI process, the proposed approach will have a pervasive influence on how VGI data is collected, aggregated and analyzed in the future.
Agumya, A., & Hunter, G. J. (1999). A risk-based approach to assessing the ‘Fitness for Use’of spatial data. Urisa Journal, 11(1), 33-44.
Bakillah, M., Liang, S. H., Mobasheri, A., & Zipf, A. (2013). Towards an efficient routing web processing service through capturing real-time road conditions from big data. Paper presented at the Computer Science and Electronic Engineering Conference (CEEC), 2013 5th.
Boin, A. T., & Hunter, G. J. (2006). Do spatial data consumers really understand data quality information. Paper presented at the 7th International symposium on spatial accuracy assessment in natural resources and environmental sciences.
Bruin, S. d., Bregt, A., & Ven, M. v. d. (2001). Assessing fitness for use: the expected value of spatial data sets. International Journal of Geographical Information Science, 15(5), 457-471.
Brunsdon, C., & Comber, L. (2012). Assessing the changing flowering date of the common lilac in North America: a random coefficient model approach. GeoInformatica, 16(4), 675-690.
Chrisman, N. (1991). The error component in spatial data. Geographical information systems, 1, 165-174.
Coleman, D. J. (2010a). The potential and early limitations of volunteered geographic information. Geomatica, 64(2), 27-39.
Coleman, D. J. (2010b). Volunteered geographic information in spatial data infrastructure: an early look at opportunities and constraints. Paper presented at the GSDI 12 World Conference.
Comber, A., See, L., Fritz, S., Van der Velde, M., Perger, C., & Foody, G. (2013). Using control data to determine the reliability of volunteered geographic information about land cover. International Journal of Applied Earth Observation and Geoinformation, 23(0), 37-48. doi: http://dx.doi.org/10.1016/j.jag.2012.11.002
Coote, A., & Rackham, L. (2008). Neogeographic data quality–is it an issue. Paper presented at the AGI Geocommunity conference, ConsultingWhere Ltd.
Crampton, J. W. (2009). Cartography: maps 2.0. Progress in Human Geography, 33(1), 91-100.
Cukier, K. (2010). Data, data everywhere: A special report on managing information: Economist Newspaper.
De Judicibus, D. (2008). World2. 0. Retrieved October 3,2009 from the World Wide Web: http://lindipendente.splinder.com/post/15354690/World+2.0, 2.
Elwood, S. (2008). Volunteered geographic information: future research directions motivated by critical, participatory, and feminist GIS. GeoJournal, 72(3-4), 173-183. doi: 10.1007/s10708-008-9186-0
Estes, J. E., & Mooneyhan, D. W. (1994). Of maps and myths. Photogrammetric engineering and remote sensing, 60(5), 517-524.
FGDC. (1997). Framework Introduction and Guide. Federal Geographic Data Committee (FGDC).
Fichter, D. (2010). What is a Mashup. ENGARD, N. Library Mashups Exploring new ways to deliver library data. Information Today.
Flanagin, A. J., & Metzger, M. J. (2008). The credibility of volunteered geographic information. GeoJournal, 72(3-4), 137-148.
Foody, G. M., & Boyd, D. S. (2013). Using Volunteered Data in Land Cover Map Validation: Mapping West African Forests. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 6(3), 1305-1312. doi: 10.1109/JSTARS.2013.2250257
Fritz, S., McCallum, I., Schill, C., Perger, C., Grillmayer, R., Achard, F., . . . Obersteiner, M. (2009). Geo-Wiki. Org: The use of crowdsourcing to improve global land cover. Remote Sensing, 1(3), 345-354.
Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., . . . Obersteiner, M. (2012). Geo-Wiki: An online platform for improving global land cover. Environmental Modelling & Software, 31, 110-123.
Garson, G. D., & Biggs, R. S. (1992). Analytic mapping and geographic databases: Sage.
Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(7070), 900-901.
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2008). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211-221.
Goodchild, M. F. (2008). Spatial accuracy 2.0. Paper presented at the Proceedings of the eighth international symposium on spatial accuracy assessment in natural resources and environmental sciences.
Goodchild , M. F., & Glennon , J. A. (2010). Crowdsourcing geographic information for disaster response: a research frontier. International Journal of Digital Earth, 3(3). doi: 10.1080/17538941003759255
Goodchild, M. F., Guo, H., Annoni, A., Bian, L., de Bie, K., Campbell, F., . . . Jackson, D. (2012). Next-generation digital earth. Proceedings of the National Academy of Sciences, 109(28), 11088-11094.
Goodchild , M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial statistics, 1, 110-120.
Google. (2014). Google Map Maker. 2014, from https://www.google.com.tw/mapmaker
Haklay , M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and planning. B, Planning & design, 37(4), 682.
Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: The neogeography of the GeoWeb. Geography Compass, 2(6), 2011-2039.
Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. Pervasive Computing, IEEE, 7(4), 12-18.
Havlik, D., Soriano, J., Granell, C., Middleton, S. E., van der Schaaf, H., Berre, A. J., & Pielorz, J. (2013). Future Internet enablers for VGI applications. Paper presented at the EnviroInfo.
Heinzelman, J., & Waters, C. (2010). Crowdsourcing crisis information in disaster-affected Haiti: US Institute of Peace.
Hern, A. (2013). Online volunteers map Philippines after typhoon Haiyan. from http://www.theguardian.com/technology/2013/nov/15/online-volunteers-map-philippines-after-typhoon-haiyan
Hope, S., & Hunter, G. (2007). Testing the effects of positional uncertainty on spatial decision‐making. International Journal of Geographical Information Science, 21(6), 645-665.
Horita, F. E. A., Degrossi, L. C., Assis, L. F. G. d., Zipf, A., & Albuquerque, J. P. d. (2013, August 15-17, 2013). The use of Volunteered Geographic Information and Crowdsourcing in Disaster Management: a Systematic Literature Review. Paper presented at the Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois.
Howe, J. (2006). Crowdsourcing: A definition. Crowdsourcing: Tracking the rise of the amateur.
ISO, I. (2002). 19113—Geographic Information—Quality Principles. International Organization for Standardization.
Jokar Arsanjani, J., Helbich, M., Bakillah, M., Hagenauer, J., & Zipf, A. (2013). Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science, 27(12), 2264-2278. doi: 10.1080/13658816.2013.800871
Jones, C. E., Mount, N. J., & Weber, P. (2012). The rise of the GIS volunteer. Transactions in Gis, 16(4), 431-434.
Juran, J. M. (2003). Juran on leadership for quality: Simon and Schuster.
Knights, M. (2007). Web 2.0. Communications Engineer, 5(1), 30-35.
Krumm, J., Davies, N., & Narayanaswami, C. (2008). User-generated content. IEEE Pervasive Computing, 7(4), 10-11.
Li, J., & Cardie, C. (2013). Early Stage Influenza Detection from Twitter. arXiv preprint arXiv:1309.7340.
Liu, S. B., & Iacucci, A. A. (2010). Crisis map mashups in a participatory age. ACSM Bulletin, 245.
Maso, J., Pomakis, K., & Julia, N. (2010). OpenGIS web map tile service implementation standard. Open Geospatial Consortium Inc, 04-06.
Meier, P., & Brodock, K. (2008). Crisis mapping Kenya’s election violence: Comparing mainstream news, citizen journalism and Ushahidi. iRevolution Blog, October, 23.
Mooney, P., & Corcoran, P. (2011). Annotating spatial features in open-streetmap. Proceedings of the GISRUK, 52-56.
Murugesan, S. (2007). Understanding Web 2.0. IT professional, 9(4), 34-41.
O'reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. Communications & strategies(65).
O'Rielly, T. (2005). What Is Web2. 0. Design Patterns and Business Models for the Next Generation of Software [Electronic Version] from http://www. oreillynet. com.
Poore, B. S., Wolf, E. B., Korris, E. M., Walter, J. L., & Matthews, G. D. (2012). Structures data collection for The National Map using volunteered geographic information: U.S. Geological Survey Open-File (pp. 34).
Priedhorsky, R., Jordan, B., & Terveen, L. (2007). How a personalized geowiki can help bicyclists share information more effectively. Paper presented at the Proceedings of the 2007 international symposium on Wikis.
Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3), 23-49.
Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PloS one, 6(5), e19467.
Spinsanti, L., & Ostermann, F. O. (2011). Retrieve Volunteered Geographic Information for Forest Fire.
Surowiecki, J. (2005). The wisdom of crowds: Random House LLC.
Thomas , F. (2005). The world is flat. New York: Farrar, Straus and Giroux.
Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, 234-240.
Tsou, M.-H. (2011). Revisiting web cartography in the United States: The rise of user-centered design. Cartography and Geographic Information Science, 38(3), 250-257.
Turner, A. (2006). Introduction to neogeography: " O'Reilly Media, Inc.".
Williams, R. (1987). Selling a geographical information system to government policy makers. Paper presented at the Annual Conference of the Urban and Regional Information Systems Association.
Wilson, M. W., & Graham, M. (2013). Neogeography and volunteered geographic information: a conversation with Michael Goodchild and Andrew Turner. Environment and Planning A, 45(1), 10-18. doi: 10.1068/a44483
Wolf, E. B., Poore, B. S., Caro, H. K., & Matthews, G. D. (2011). Volunteer Map Data Collection at the USGS.
Yanenko, O., & Schlieder, C. (2012). Enhancing the Quality of Volunteered Geographic Information: A Constraint-Based Approach Bridging the Geographic Information Sciences (pp. 429-446): Springer.
蔡博文. (2011). NGIS的下一步 : 公眾參與. 國土資訊系統通訊, 74, 2-9.