| 研究生: |
夏明瑤 Xia, Ming-Yao |
|---|---|
| 論文名稱: |
複合超過濾理論與其在蛋白質純化上之應用 Ultrafiltration Technology and It's Applications for Protein Purification |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 分子動力 、超過濾 、蛋白質 、蛋白質純化 |
| 外文關鍵詞: | protein purification, protein, ultrafiltration, molecular dynamics |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質被普遍用於日常生活中,人體內促進生長發育的生長賀爾蒙、糖尿病的治療劑胰島素、食品烘焙用澱粉脢及洗衣粉中的分解酵素等皆是由蛋白質所組成。蛋白質不論是用在結構分析預測或醫療藥品上,純化的要求都相當嚴格,不但要避免副作用產生更要注意使用者的安全。蛋白質超過濾操作的主要功用包括蛋白質濃縮、雜質去除及純度提高。截至目前為止,工業界仍無法完全掌握整個超過濾過程的細節,通常是就各別影響因素加以控制並過濾後,適時調整操作參數,以逐步取得要求的純度及數量,過程既繁瑣又難精確。為了達成對蛋白質純化能力的掌控,本研究以微觀模型探討及模擬整個超過濾製程之重要參數及作業行為,改善其盲點並達成蛋白質純化的最終目標。
本研究以微觀分子力學模型為基礎,探討超過濾製程之重要參數,並以此建構一套完整的超過濾理論模型。首先利用分子力學推估介質參數,並完成含多種交互影響因素之超過濾巨觀模型。接著將巨觀模型微觀化,再進行電腦模擬,藉由分子力學模擬掌握微觀粒子(包括原子、分子等基本粒子)的運動狀態,以探討原子與分子所組成的蛋白質在超過濾作業中之物理性質及物系總體行為。最後,將文獻實驗資料與微觀模擬結果相互印證,並以印證後可靠之模型進行超過濾產量預估及優化等應用。
由本文所提之複合超過濾理論估算值與文獻實驗資料值相互比對之結果,發現兩者間誤差均落於6 %內,證實本文所提之理論精確可行。製程介質參數的取得,若採用本文所提之分子動力模擬法進行推估,可改善現有既耗時又不經濟的重覆實測之方式,大幅提高生產之效率。此外,本研究所建構之超過濾成果推估電腦演算系統,對超過濾行為預估及最佳化等應用,有相當大的助益。未來更可將該套理論推廣使用於其他各種生化技術、生醫工程、電子工業及食品工業等領域。
Proteins are commonly used in daily life for various purposes including (1) the hormone of growth for human body, (2) the insulin for treatment of diabetes mellitus, (3) the amylase for food bakery products, (4) the decompose enzymes used in washing powders. In order to avoid detrimental end effects for patients, the demand on protein purification is very strict. The functions of ultrafiltration process include protein condensation, impurities removal and purity enhancement. Traditionally, the ultrafiltration process is done by changing influential factor one at a time. The operating parameters are adjusted based on the results of each experimental run so that the requirements on both purification degree and overall output can be met. In order to characterize the ultrafiltration process both of the macroscopic and microscopic modeling approaches will be employed in this project.
This project will finally establish a comprehensive ultrafiltration model for protein purification. The comprehensive model will integrate all intermolecular reaction forces, external operating forces and membrane resistance forces together. The microscopic molecular dynamics approach will then be used to estimate key physical parameters and to characterize the behaviors of comprehensive ultrafiltration processes for protein purification in microscopic viewpoint. The results will then be further verified by experimental data.
The computed results obtained from the study are compared with experimental ones in the literature. It was found that the results obtained by the proposed method and those appeared in the literature agree quite well.
1.Blanpain, P., Hermia, J. and Lenoel, M.,“Mechanisms Governing Permeate Flux and Protein Rejection in the Microfiltration of Beer with a Cyclopore Membrane,”Journal of Membrane Science, Vol. 84, pp.37, 1993.
2.Bowen, W.R., Calvo, J.I. and Hernandez, A.,“Steps of Membrane Blocking in Flux Decline During Protein Microfiltration,”Journal of Membrane Science, Vol. 101, pp.153~165, 1995.
3.Bowen, W.R., Jones, M.G. and Yousef, H.N.S.,“Dynamic Ultrafiltration of Proteins---A Neural Network Approach,”Journal of Membrane Science, Vol. 146, pp.225~235, 1998.
4.Burkert, U. and Allinger, N.L., Molecular Mechanics, American Chemical Society, Washington, 1982.
5.Burns, D.B. and Zydney, A.L.,“Effect of Solution pH on Protein Transport through Ultrafiltration Membranes,”Biotechnology and Bioengineering, Vol. 64, pp.27~37, 1999.
6.Carman, P.C.,“Fundamental Principles of Industrial Filtration,”Trans. Inst. Chem. Eng., Vol. 16, pp.168~188, 1938.
7.Carnahan, N.F. and Starling, K.E.,“Equation of State for Nonattracting Rigid Spheres,”J. Chem. Phys., Vol. 51, pp.635~636, 1969.
8.Creighton, T.E., Proteins:Structures and Molecular Properties, 2nd edition, Freeman, 1993.
9.Derjaguin, B.V., Voropayeva, T.N., Kabanov, B.N. and Titiyevskaya, A.S., “Surface Forces and the Stability of Colloids and Disperse Systems,”J. Colloid Interface Sci., Vol. 19, pp.113~135, 1964.
10.Fu, L.F. and Dempsey, B.A.,“Modeling the Effect of Particle Size and Charge on the Structure Filter Cake in Ultrafiltration,”Journal of Membrane Science, Vol. 149, pp.221~240, 1998.
11.Hall, K.R.,“Another Hard Sphere Equation of State,”J. Chem. Phys., Vol. 57, pp.2252~2254, 1972.
12.Hoskin, N.E. and Levine, S.,“The Interaction of Two Identical Spherical Colloidal Particles : The Free Energy,”Phil. Trans.R. Soc., Vol. A248, pp.449~466, 1956.
13.Hermia, J.,“Constant Pressure Blocking Filtration Laws---Application to Power-Law Non-Newtonian Fluids,”Tran. Inst. Chem. Engrs., Vol. 60, pp.183, 1982.
14.Hunter, R.J., Zeta Potential in Colloid Science, Academic Press, London, 1986.
15.Iritani, E., Mukai, Y., Tanaka, Y. and Murase, T.,“Flux Decline Behavior in Dead-End Microfiltration of Protein Solutions,”Journal of Membrane Science, Vol. 103, pp.181~191, 1995.
16.Iritani, E., Mukai, Y. and Kiyotomo, Y.,“Effects of Electric Field on Dynamic Behaviors of Dead-End Inclined and Downward Ultrafiltration of Protein Solutions,”Journal of Membrane Science, Vol. 164, pp.51~57, 2000.
17.Israelachvili, J., Intermolecular and Surface Forces, 2nd edition, Academic Press, London, 1992.
18.Jacob, J., Pradanos, P., Calvo, J.I., Hernandez, A. and Jonsson, G., “Fouling Kinetics and Associated Dynamics of Structural Modifications,” Colloids and Interfaces A : Physicochemical and Eng. Aspects, Vol. 138, pp.173~183, 1998.
19.Madhusudan, R., Lin, J. and Murad S.,“Molecular Simulation of Electro-osmosis in Fluid Mixtures Using Semi-Permeable Membranes,”Fluid Phase Equilibria, Vol. 150-151, pp. 97~105, 1998.
20.Mukai, Y., Iritani, E. and Murasa, T.,“Effect of Protein Charge on Cake Properties in Dead-End Ultrafiltration of Protein Solutions,”Journal of Membrane Science, Vol. 137, pp.271~275, 1997.
21.Mulder, M.H.V., Membranes in Bioprocessing : Theory and Application, Chapman and Hall, London, 1993.
22.Murad, S. and Lin, J.,“Molecular Modeling of Fluid Separations Using Membranes:Effect of Molecular Forces on Mass Transfer rates,”Chemical Engineering Journal, Vol. 74, pp.99~108, 1999.
23.Noble, R.D. and Stern, S.A., Membrane Separations Technology : Principles and Applications, Elsevier, 1999.
24.Osada, Y. and Nakagawa, T., Membrane Science and Technology, Marcel Dekker, Inc., New York, 1992.
25.Palecek, S.P. and Zydney, A.L.,“Intermolecular Electrostatic Interaction and Their Effect on Flux and Protein Deposition during Protein Filtration,” Biotechnol. Prog., Vol. 10, pp.207~213, 1994.
26.Powles, J.G. and Murad, S.,“The Simulation of Semi-Permeable Membrane --- Osmosis, Reverse Osmosis and Electro-osmosis in Electrolyte Solution,” Journal of Molecular Liquids, Vol. 78, pp. 225~231, 1998.
27.Rao, S.S., Engineering Optimization : Theory and Practice, John Wiley & Sons, Inc., New York, 1995.
28.Rigby, M., Smith, E.B., Wakeham, W.A. and Maitland, G.C., The Forces Between Molecules, Oxford, 1986.
29.Roth, C.M., Neal, B.L. and Lenhoff, A.M.,“Van Der Waals Interactions Involving Proteins,”Biophysical Journal, Vol. 70, pp.977~987, 1996.
30.Shaw, D.J., Introduction to Colloid and Surface Chemistry, 4th edition, Butterworth Heinemann Ltd, Oxford, 1992.
31.Tracey, E.M. and Davis, R.H.,“Protein Fouling and Track-Etched Polycarbonate Microfiltration Membrane,”J. Colloid Interface Sci., Vol. 167, pp.104~116, 1994.
32.Verwey, E.J.W. and Overbeek, J.T.G., Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.
33.Vilker, V.L., Colton, C.K. and Smith, K.A.,“Concentration Polarization in Protein Ultrafiltration. Part II : Theoretical and Experimental Study of Albumin Ultrafiltered in an Unstirred Cell,”AIChE J, Vol. 27, pp.637~645, 1981.
34.Zeman, L.J. and Zydney, A.L., Microfiltration and Ultrafiltration :Principle and Application, Marcel Dekker, Inc., New York, 1996.
35.Zydney, A.L. and Pujar. N.S.,“Protein Transport through Porous Membranes : Effects of Colloidal Interactions,”Colloids and Surface A : Physicochemical and Engineering Aspects, Vol. 138, pp.133~143, 1998.
36.董有蘭, 化學與生命(上)(下), 國立編譯館出版, 台北, 1997.
37.陳明造, 葉東柏, 基礎生物化學, 藝軒圖書出版社, 台北, 1987.
38.田蔚城, 生物技術, 九州圖書文物有限公司, 台北, 1996.