簡易檢索 / 詳目顯示

研究生: 李思賢
Lee, Sih-Sian
論文名稱: 甲醯肼在銅(100)與氧/銅(100)表面的吸附與反應研究
Adsorption and Reactions of Formic Hydrazide on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 超高真空 (UHV)程式控溫反應/脫附 (TPR/D)反射-吸收紅外光譜 (RAIRS)銅(100)甲醯肼 (formic hydrazide)
外文關鍵詞: UHV, Temperature-programmed reaction/desorption (TPR/D), Reflection-absorption infrared spectroscopy (RAIRS), Cu(100), Formic hydrazide
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是在超高真空系統(UHV)中,利用程序控溫反應/脫附(Temperature-programmed reaction/desorption,TPR/D)、反射-吸收紅外光譜 (Reflection-absorption infrared spectroscopy,RAIRS)表面技術,探討Formic hydrazide (甲醯肼)於Cu(100)與O/Cu(100)表面的吸附情形與熱反應,提出可能的反應路徑。
    於120 K,Formic hydrazide可以多種吸附形式存在於銅(100)表面,包括HC(O)-NH-NH2和HC(OH)=N=N⋯HO (或-HC(OH)-N≡N⋯HO),第一種結構仍保有C=O,呈現了1642 cm-1的紅外光吸收,第二種結構是第一種結構經H轉移及斷裂或拉長N-H鍵所產生有2094 cm-1的吸收波數。它們在表面有氫鍵的作用力。吸附分子於溫度上升過程中分解並生成N2 (239 K)、H2O (239 K)、H2 (245 K)脫附。當溫度介於250 K-300 K間,表面可能存在著HC(OH)N2的反應中間物,溫度升至365 K,此中間物以HCON2H形式脫附,含C、N、O原子的表面殘留物種再於較高溫生成CO2 (540 K)、CO (540 K)、NO (864 K)。
    Formic hydrazide/O/Cu(100)的研究中,其熱反應的主要脫附產物有H2O、CON2H2、CO、CO2、NO。產物的種類與脫附溫度類似Cu(100)表面上熱反應的結果,紅外光譜隨溫度變化與無氧吸附的發現也沒有大幅改變,然而產物脫附量相對卻比較少,可能有以下原因: (一) Formic hydrazide分子於吸附過程中,因表面氧原子的立體排斥(steric repulsion)或靜電斥力(electrostatic repulsion),不利於吸附於此分子的吸附。(二) 在O/Cu(100)表面上,可能因為氧原子立體效應(steric effect)或電子效應(electronic effect)而降低了此分子的反應性。

    Adsorption and reactions of formic hydrazide on Cu(100) and O/Cu(100) are explored, using temperature-programmed reaction/desorption (TPR/D) and reflection-absorption infrared spectroscopy (RAIRS) under ultra-high vacuum.
    In the case of Cu(100) at 120 K, formic hydrazide exists in multiple adsorption forms, including (1) HC(O)-NH-NH2 and (2) HC(OH)=N=N⋯HO (or -HC(OH)-N≡N⋯HO). The first form possesses a carbonyl group with a measured infrared peak at 1642 cm-1. The second adsorption structure is generated from the transformation of the first one, involving H-migration and N-H bond elongation (or breakage), and has infrared adsorption of 2094 cm-1. Hydrogen bonding exists between the adsorbed molecules. Thermal decomposition of formic hydrazide on Cu(100) generates the products of H2, N2, H2O, CON2H2, CO2, CO and NO. N2 (239 K), H2O (239 K) and H2 (245 K) evolve below 300 K. Between 250 K and 300 K, an intermediate of HC(OH)N2 is present on the surface. Upon heating to 365 K, this intermediate is desorbed into vacuum likely in the form of H-C(O)-N=NH. Eventually, other unidentified surface species containing C, O and N atoms further react to generate CO2, CO and NO at higher temperatures.
    In the formic hydrazide/O/Cu(100) study, the observed infrared absorption frequencies are similar to those of Cu(100). Moreover, the thermal reaction of the adsorbed formic hydrazide produces the same products as those on Cu(100). However, the amounts of the products are relatively small, which may be due to the following reasons: (1) In the adsorption process of formic hydrazide, the molecules approaching the O/Cu(100) surface may be blocked by the preadsorbed oxygen atoms and decrease in the possibility of adsorption due to steric and/or electrostatic repulsion. (2) The preadsorbed oxygen atoms possibly occupy the active sites and therefore suppress the reaction of adsorbed formic hydrazide.

    第一章 緒論(Introduction) 1 1.1 表面化學發展 1 1.2 表面的定義與Cu(100)表面 2 1.3 表面吸附 3 1.4 真空的定義與應用 4 1.5 研究動機與文獻回顧 5 第二章 表面化學之分析技術(Surface science approach) 12 2.1 程序控溫反應/脫附(Temperature-programmed reaction/desorption,TPR/D) 12 2.2 反射-吸收紅外光譜(Reflection-absorption infrared spectroscopy,RAIRS) 16 第三章 實驗系統(Experimental Section) 20 3.1 超高真空系統(Ultra-high vacuum,UHV) 20 3.2 單晶的前處理方法 22 3.3 氧化表面的製備方法 23 3.4 藥品之前處理方法 23 第四章 結果與討論(Results and Discussion) 25 4.1 Formic hydrazide於Cu(100)和O/Cu(100)表面上的程序控溫反應/脫附(TPR/D)研究 25 4.1.1 Formic hydrazide於Cu(100)表面上的TPR/D研究 25 4.1.2 Formic hydrazide於O/Cu(100)表面上的TPR/D研究 51 4.2 Formic hydrazide在Cu(100)和O/Cu(100)表面上的反射-吸收紅外光譜(RAIRS)研究 65 4.2.1 Formic hydrazide在Cu(100)表面上的RAIRS研究 65 4.2.2 Formic hydrazide在O/Cu(100)表面上的RAIRS研究 75 第五章 結論(Conclusions) 78 參考文獻(References) 80 附錄 85

    1. Somorjai, G. A.; Li, Y. Introduction to Surface Chemistry and Catalysis. John Wiley & Sons. Hoboken, N.J., 2010.
    2. Langmuir, I. Surface Chemistry. Chem. Rev. 1933, 13, 147-191.
    3. Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. II. Liquids. J. Am. Chem. Soc. 1917, 39, 9, 1848-1906.
    4. Christmann, K.; Ertl, G.; Pignet T. Adsorption of Hydrogen on a Pt(111) Surface. Surf. Sci. 1973, 54, 365-392.
    5. Vickerman, J. C.; Gilmore, I. S. Surface Analysis-The Principle Techniques, 2nd Edition. John Wiley & Sons. New York, 2009.
    6. Zielinski, P. Review of Surface Relaxation and Reconstruction Phenomena. Acta Phys. Pol. A 1996, 89, 251-263.
    7. Pang, X. Y.; Xue, L. Q.; Wang. G. C. Adsorption of Atoms on Cu Surfaces: A Density Functional Theory Study. Langmuir 2007, 23, 9, 4910-4917.
    8. Piumetti, M. A Brief History of The Science of Catalysis - I: From The Early Concepts to Single-Site Heterogeneous Catalysts. Chimica. Oggi 2014, 32, 22-27.
    9. Szanyi, J.; Goodman, D. W. CO Oxidation on Palladium. 1. A Combined Kinetic-Infrared Reflection Absorption Spectroscopic Study of Pd(100). J. Phys. Chem. 1994, 98, 2972-2977.
    10. O’Hanlon, J. F. A User’s Guide to Vacuum Technology, 3rd Edition. John Wiley & Sons. Hoboken, N.J., 2003.
    11. Zargoosh, K.; Habibi, H.; Abdolmaleki, A.; Firouz, K. Novel Magnetic Polyamic Hydrazide Nanocomposite: Preparation, Characterization, and Application for The Removal of Cd2+ and Pb2+ from Industrial Wastes. Appl. Polym. Sci. 2015, 132, 42538.
    12. Qin, Li.; Huang,C. H.; Xu, D.; Xie, L. N.; Shao, J.; Mao L.; Kalyanaraman, B.; Zhu B. Z.Molecular Mechanism for The Activation of The Anti-Tuberculosis Drug Isoniazid by Mn(III): First Detection and Unequivocal Identification of The Critical N-Centered Isoniazidyl Radical and Its Exact Location. Free Radic. Biol. Med. 2019, 143, 232-239.
    13. Laggoun, R.; Ferhat, M.; Saidat, B.; Benghiac, A.; Chaabani, A. Effect of p-Toluenesulfonyl hydrazide on Copper Corrosion in Hydrochloric Acid Solution. Corros. Sci. 2020, 165, 108363.
    14. Srinivasan, K.; Govindarajan, S.; Harrison, W. T. A. Divalent Metal Complexes of Formylhydrazine: Syntheses and Crystal Structures of M(CH4N2O)2(H2O)2.2NO3 (M = Zn, Co). Inorg. Chem. Commun. 2009, 12, 619-621.
    15. Woźniczka, M.; Szajdzinska-Pietek, E.; Jezierska, J.; Pasternak, B.; Pasternak, B.; Gadek-Sobczynska, J.; Kufelnicki, A. The Complexing Properties of Oxalodihydrazide, Acethydrazide and Formic Hydrazide with Cu(II) in Aqueous Solution. Inorg. Chim. Acta 2017, 455, 659-665.
    16. Wu, S. M.; Chiang, C. M.表面科學方法研究異相催化反應機制.科學新知. 33, 100.8
    17. King, D. Thermal Desorption from Metal Surfaces: A Review. Surf. Sci. 1975, 47, 394-402.
    18. Redhead, P. A. Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.
    19. Vickerman, J. C. Surface Analysis: The Principle Techniques. John Wiley & Sons. New York, 1997.
    20. Lin, J. L. Carbon-Halogen Bond Dissociation at Copper Surface: Alkyl Radicals versus Metal Alkyls, Columbia University, New York, 1993.
    21. Sexton, B. A. Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surf. Sci. 1979, 88, 299-318.
    22. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/
    23. Yao, Y.; Zaera, F. Thermal Chemistry of Hydrazine on Clean and Oxygen- and Water-Predosed Cu(110) Single-Crystal Surfaces. Surf. Sci. 2016, 650, 263-271.
    24. Yao, Y.; Guerrero-Sánchez, G.; Takeuchi, N.; Zaera, F. Coadsorption of Formic Acid and Hydrazine on Cu(110) Single- Crystal Surfaces. J. Phys. Chem. C 2019, 123, 7584-7593.
    25. Chorkendorff, I.; Rasmussen, P. B. Reconstruction of Cu(100) by Adsorption of Atomic Hydrogen. Surf. Sci. 1991, 248, 35-44.
    26. Keung, A. J.; Filler, M. A.; Bent, S. F. Thermal Control of Amide Product Distributions at the Ge(100)-2×1 Surface. J. Phys. Chem. C 2007, 111, 411-419.
    27. Sexton, B. A.; Hughes, A. E. A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surf. Sci. 1984, 140, 227-248.
    28. Brosseau, R.; Brustein, M. R.; Ellis, T. H. Water Adsorption on Cu(100): The Effect of Defects. Surf. Sci. 1993, 294, 243-250.
    29. Sueyoshi, T.; Sasaki, T.; Iwasawa, Y. Oxygen Atoms on Cu(100) Formed at 100 K, Active for CO Oxidation and Water-Hydrogen Abstraction, Characterized by HREELS and TPD. J. Phys. Chem. B 1997, 101, 4648-4655.
    30. Ellis, T. H.; Kruus, E. J.; Wang, H. Adsorption and Reaction of Water on Oxygen Precovered Cu(100). J. Vac. Sci. Technol. A 1993, 11, 2117-2121.
    31. Kolovos-Vellianitis, D.; Kammler, T.; Küppers, J. Interaction of Gaseous Hydrogen Atoms with Oxygen Covered Cu(100) Surfaces. Surf. Sci. 2001, 482-485, Part 1, 166-170.
    32. Bryden, T. R.; Garret, S. J. Adsorption and Polymerization of Formaldehyde on Cu(100). J. Phys. Chem. B 1999, 103, 10481-10488.
    33. Lippert, T.; Koskelo, A.; Stoutland, P. O. Direct Observation of a Photoinduced Wolff Rearrangement in PMMA Using Ultrafast Infrared Spectroscopy. J. Am. Chem. Soc. 1996, 118, 1551-1552.
    34. Skelly, J. F.; Bertrams, T.; Munz, A. W.; Murphy, M. J.; Hodgson A.Nitrogen Induced Restructuring of Cu(111) and Explosive Desorption of N2. Surf. Sci. 1998, 415, 48-61.
    35. Jorgensenn, S. W.; Canning, N. D. S.; Madix, R. J. A HREELS, TPD Study of Nitric Oxide Adsorption, Desorption and Reaction on Clean and Sulfur Covered Palladium (100). Surf. Sci. 1987, 179, 322-350.
    36. Keung, A. J.; Filler, M. A.; Porter, D. W.; Bent S. F. Tertiary Amide Chemistry at The Ge(100)-2 x1 Surface. Surf. Sci. 2005, 599, 41-54.
    37. Krimm, S.; Bandekar, J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Adv. Protein Chem. 1986, 38, 181-364.
    38. Singh, B. R.; DeOliveira, D. B.; Fu F. N.; Fuller, M. P. Fourier Transform Infrared Analysis of Amide III Bands of Proteins for The Secondary Structure Estimation. Biomolecular Spectroscopy III 1993, 1890, 47-55.
    39. Krikorian, S. E.; Mahpour, M. The Identification and Origin of N-H Overtone and Combination Bands in The Near-Infrared Spectra of Simple Primary and Secondary Amides. Spectrochim. Acta A 1973, 29A, 1233-1246.
    40. Nakamoto, K.; Margoshes, M.; Rundle, R. E. Stretching Frequencies as a Function of Distances in Hydrogen Bonds. J. Am. Chem. Soc. 1955, 77, 24, 6480-6486.
    41. Eaton, G.; Symons, M. C. R.; Rastogi, P. P. Spectroscopic Studies of The Solvation of Amides with N-H Groups. Part 1.-The Carbonyl Group. J. Chem. Soc. 1989, 85, 3257-3271.
    42. Laurence, C.; Berthelot, M. Substituent Effects in I.R. Spectroscopy-VIII Diazoacetophenones. Spectrochim. Acta A 1982, 38A, 487-490.
    43. Dendramis, A.; Leroi, G. E. Diazoacetonitrile: A Low Temperature Study of The Vibrational Spectrum. Spectrochim. Acta A 1978, 34A, 993-1003.
    44. Ramsay, D. A. The Infra-Red Spectrum and Structure of Diazomethane. J. Chem. Phys. 1949, 17, 666.
    45. LeFevre, R. J. W.; Sousa, J. B.; Werner, R. L. Infra-red Spectra of Certain Quinone Diazides. J. Chem. Soc. 1954, 4686-4687.
    46. Cataliotti, R.; Sorriso, S.; Paliani, G. The Interaction of α-Diazoketones with Hydroxylic Solvents. Can. J. Chem. 1976, 54, 2445-2450.
    47. Spectral Database for Organic Compounds, SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
    48. Mashima, M. Infrared Absorption Spectra of Hydrazides. IV Some Monoacid Hydrazides. Bull. Chem. Soc. Jpn. 1962, 35, 1882-1889.
    49. Samdal, S.; Møllendal, H. The Structural and Conformational Properties of Formic Hydrazide (Formylhydrazine) Studied by Microwave Spectroscopy and Quantum Chemical Calculations. J. Phys. Chem. A 2003, 107, 8845-8850.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE