| 研究生: |
潘建昌 Pan, Chien-Chang |
|---|---|
| 論文名稱: |
藉由腫瘤內異質性以及腫瘤演化分析復發型大腸直腸癌患者基因組 Comparative Genomic Profiling of Recurrence CRC Patients by Intra-tumor Heterogeneity and Evolution |
| 指導教授: |
楊士德
Yang, Hsih-Te |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 深度定序 、腫瘤內異質性 、大腸直腸癌 、演化樹 |
| 外文關鍵詞: | ultra-deep sequencing, intratumor heterogeneity, colorectal cancer, evolution tree |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨者深度定序法的出現,腫瘤內異質性,也就是在致癌過程中出現的細胞多樣性演化,已經可以藉由演化樹觀察及顯示,而演化樹的組成則是藉由血液或活檢 樣本的基因組分析的創始克隆以及亞克隆所組成,活檢樣本則是來自單一癌性病 變或是原發性腫瘤以及轉移性腫瘤。而驅動突變,也就是基因的畸形變異,促成癌症發生、演化以及轉移,顯示出多種變異等位基因頻率(VAF)特別是在罕見或亞克隆變異之中,已經可以藉由高覆蓋率的 NGS 技術可靠的偵測到。整合這些關於腫瘤異質性的研究明確地證明了精確腫瘤學治療的可預測性及限制,但假設牽 涉分子分析匹配治療的兩個潛在的臨床治療方案,一個是腫瘤內異質性的推斷,在藥物治療之前能夠提供足夠的分子基因組資訊來分析及預測癌症治療的預後情形,另一個則是發掘出有驅動性的突變針對於不同的克隆細胞群體的創始克隆,可能是治療癌症復發的靶標藥物。
雖然在大規模大腸直腸癌(CRC)的基因型分析出四種共同的分子亞型,但是在 常規藥物治療下,異質性的結果依舊被觀察出在復發及非復發病人之中。我們假設腫瘤異質性或許能顯著地有助於臨床上未達到的需求,然而現在並沒有任何全面性基因體分析針對大腸直腸癌演化發表的文獻,且具有生物上可解釋的發現,僅有一些簡單或是回顧文獻。在本研究中,我們對非復發型以及復發型CRC患者 的基因組中癌症基因進行深度定序,且具有詳細的臨床特徵資料。除了獲得高品質的基因組和臨床數據外,我們還建立並驗證了一個生物信息學的流程管道,用於整合驅動突變的發現,拷倍數的偵測,克隆群鑑定以及建立演化樹模型。最終 我們建立了一個臨床決策樹,由創始克隆的驅動基因(MYO18A)和亞克隆中的兩個 驅動基因(DDR3和FLT3)組成,用於腫瘤內異質性的 CRC 治療反應的可預測性。而這個預測 CRC 復發的決策模型在治療前可能是有益的,且有利於疾病預後。
With the advent of ultra-deep sequencing, tumor heterogeneity, evolved from cellular diversities during the process of carcinogenesis, has been observed and exhibited displayed by an evolution tree consists of a founding clone and sub-clones based on genomic profiling of blood or biopsy samples from a single cancerous lesion or from both primary tumor and metastases. The driver mutations, i.e. genetic aberrations arise and contribute to tumor carcinogenesis, evolution, and metastasis, show a variety of variant allele frequency (VAF) particularly in the rare or subclonal variants which can be reliably detected from high-coverage NGS. Consolidating these studies for tumor heterogeneity explicitly demonstrates the limits of treatment predictability in precision
oncology, but hypothetically implicate two potential clinical regimens for the molecular profiling matched therapy. One is the inference of intratumor heterogeneity before drug treatment might present sufficient molecularly genomic profiling for predicting the
prognosis of cancer therapeutics. The other is the discovery of actionable mutations driving the founding clone towards different clonal cell populations might be effective drug targets for combination therapy against cancer relapse or recurrence.
Although the genomic profiling for a large-scale population of colorectal cancer (CRC) leading to four consensus molecular subtypes, the heterogeneous outcomes
between recurrence and non-recurrence were observed in response to the conventional drug treatments. We hypothesized that the tumor heterogeneity might prominently contribute to this clinically unmet needs, however, no any comprehensive genomics study for CRC tumor evolution with biologically interpretable finding is published except some simple or review papers. In this study, we have deeply sequenced the cancer panel genes on the genome of non-recurrent and recurrent CRC patients with detail clinical characteristics. Besides obtaining high-quality genomic and clinical data, a bioinformatics pipeline has been built and validated for integrating driver mutation discovery, copy number variation detection, clonal population identification, and
evolution tree modeling. Eventually, we established a clinical decision tree, consists of a driver gene (MYO18A) in the founding clone and two driver genes (DDR2 and FLT3) in the sub-clone, for the predictability of CRC treatment response based on intratumor heterogeneity. This decision model for the prediction of CRC recurrence may be informative before treatment and beneficial to disease prognosis.
1. Watson, A.J. and P.D. Collins, Colon cancer: a civilization disorder. Dig Dis,2011. 29(2): p. 222‐8.
2. Cunningham, D., et al., Colorectal cancer. Lancet, 2010. 375(9719): p. 1030‐47.
3. Cheung, D.Y., et al., The anatomical distribution of colorectal cancer in Korea:evaluation of the incidence of proximal and distal lesions and synchronous
adenomas. Intern Med, 2008. 47(19): p. 1649‐54.
4. Tamura, K., et al., Annual changes in colorectal carcinoma incidence in Japan. Analysis of survey data on incidence in Aomori Prefecture. Cancer, 1996.
78(6): p. 1187‐94.
5. Ji, B.T., et al., Colorectal cancer incidence trends by subsite in urban Shanghai,1972‐1994. Cancer Epidemiol Biomarkers Prev, 1998. 7(8): p. 661‐6.
6. Yee, Y.K., et al., Epidemiology of colorectal cancer in Asia. J Gastroenterol Hepatol, 2009. 24(12): p. 1810‐6.
7. Lu, J.B., et al., Epidemiology of gastroenterologic cancer in Henan Province,China. World J Gastroenterol, 2003. 9(11): p. 2400‐3.
8. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893‐917.
9. Kuriki, K. and K. Tajima, The increasing incidence of colorectal cancer and the preventive strategy in Japan. Asian Pac J Cancer Prev, 2006. 7(3): p. 495‐501.
10. Amri, R., et al., Impact of screening colonoscopy on outcomes in colon cancer surgery. JAMA Surg, 2013. 148(8): p. 747‐54.
11. Hagan, S., M.C. Orr, and B. Doyle, Targeted therapies in colorectal cancer‐an integrative view by PPPM. EPMA J, 2013. 4(1): p. 3.
12. Heather, J.M. and B. Chain, The sequence of sequencers: The history of sequencing DNA. Genomics, 2016. 107(1): p. 1‐8.
13. Gerstung, M., et al., Reliable detection of subclonal single‐nucleotide variants in tumour cell populations. Nature Communications, 2012. 3.
14. Klambauer, G., et al., cn.MOPS: mixture of Poissons for discovering copy number variations in next‐generation sequencing data with a low false discovery rate. Nucleic Acids Research, 2012. 40(9).
15. Miller, C.A., et al., SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol, 2014.
10(8): p. e1003665.
16. Griffith, M., et al., Optimizing cancer genome sequencing and analysis. Cell Syst, 2015. 1(3): p. 210‐223.
17. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976.194(4260): p. 23‐8.
18. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 306‐13.
19. Gerlinger, M. and C. Swanton, How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer, 2010.
103(8): p. 1139‐43.
20. Welch, J.S., et al., The origin and evolution of mutations in acute myeloid leukemia. Cell, 2012. 150(2): p. 264‐78.
21. Hu, W., et al., A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res, 2007. 67(6): p.
2757‐65.
22. Kallioniemi, A., CGH microarrays and cancer. Curr Opin Biotechnol, 2008.19(1): p. 36‐40.
23. Gonzalez‐Garcia, I., R.V. Sole, and J. Costa, Metapopulation dynamics and spatial heterogeneity in cancer. Proc Natl Acad Sci U S A, 2002. 99(20): p.
13085‐9.
24. Barrett, M.T., et al., Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet, 1999. 22(1): p. 106‐9.
25. Ding, L., et al., Clonal evolution in relapsed acute myeloid leukaemia revealed by whole‐genome sequencing. Nature, 2012. 481(7382): p. 506‐10.
26. Nik‐Zainal, S., et al., The life history of 21 breast cancers. Cell, 2012. 149(5): p.994‐1007.
27. Campbell, P.J., et al., Subclonal phylogenetic structures in cancer revealed by ultra‐deep sequencing. Proc Natl Acad Sci U S A, 2008. 105(35): p. 13081‐6.
28. Ding, L., et al., Genome remodelling in a basal‐like breast cancer metastasis and xenograft. Nature, 2010. 464(7291): p. 999‐1005.
29. Yachida, S., et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010. 467(7319): p. 1114‐7.
30. Landau, D.A., et al., Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell, 2013. 152(4): p. 714‐26.
31. Shah, S.P., et al., The clonal and mutational evolution spectrum of primary triple‐negative breast cancers. Nature, 2012. 486(7403): p. 395‐9.
32. Egan, J.B., et al., Whole‐genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution,
and clonal tides. Blood, 2012. 120(5): p. 1060‐6.
33. Gerlinger, M., et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 2012. 366(10): p. 883‐92.
34. Walter, M.J., et al., Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia, 2013. 27(6): p. 1275‐82.
35. Alizadeh, A.A., et al., Toward understanding and exploiting tumor heterogeneity. Nat Med, 2015. 21(8): p. 846‐53.
36. Fisher, R., L. Pusztai, and C. Swanton, Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer, 2013. 108(3): p. 479‐85.
37. Ma, Q.C., C.A. Ennis, and S. Aparicio, Opening Pandora's Box‐‐the new biology of driver mutations and clonal evolution in cancer as revealed by next generation sequencing. Curr Opin Genet Dev, 2012. 22(1): p. 3‐9.
38. Yap, T.A., et al., Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med, 2012. 4(127): p. 127ps10.
39. Burrell, R.A., et al., The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013. 501(7467): p. 338‐45.
40. Tabassum, D.P. and K. Polyak, Tumorigenesis: it takes a village. Nat Rev Cancer, 2015. 15(8): p. 473‐83.
41. Koboldt, D.C., et al., VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics, 2009. 25(17): p. 2283‐5.
42. Bansal, V., A statistical method for the detection of variants from nextgeneration resequencing of DNA pools. Bioinformatics, 2010. 26(12): p. i318‐24.
43. Altmann, A., et al., vipR: variant identification in pooled DNA using R. Bioinformatics, 2011. 27(13): p. i77‐84.
44. Alkan, C., et al., Personalized Copy‐Number and Segmental Duplication Maps using Next‐Generation Sequencing. Nature genetics, 2009. 41(10): p. 1061‐1067.
45. Yoon, S., et al., Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Research, 2009. 19(9): p. 1586‐1592.
46. Magi, A., et al., Detecting common copy number variants in high‐throughput sequencing data by using JointSLM algorithm. Nucleic Acids Research, 2011.
39(10): p. e65‐e65.
47. Xie, C. and M.T. Tammi, CNV‐seq, a new method to detect copy number variation using high‐throughput sequencing. BMC Bioinformatics, 2009. 10(1):
p. 80.
48. Boeva, V., et al., Control‐free calling of copy number alterations in deepsequencing data using GC‐content normalization. Bioinformatics, 2011. 27(2):p. 268‐269.
49. Boeva, V., et al., Control‐FREEC: a tool for assessing copy number and allelic content using next‐generation sequencing data. Bioinformatics, 2012. 28(3): p. 423‐425.
50. Bolli, N., et al., Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun, 2014. 5: p. 2997.
51. Roth, A., et al., PyClone: statistical inference of clonal population structure in cancer. Nature Methods, 2014. 11(4): p. 396‐+.
52. Carter, S.L., et al., Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol, 2012. 30(5): p. 413‐21.
53. Robinson, J.T., et al., Integrative genomics viewer. Nat Biotechnol, 2011. 29(1): p. 24‐6.
54. Thorvaldsdottir, H., J.T. Robinson, and J.P. Mesirov, Integrative Genomics Viewer (IGV): high‐performance genomics data visualization and exploration. Brief Bioinform, 2013. 14(2): p. 178‐92.
55. Cingolani, P., et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso‐2; iso‐3. Fly (Austin), 2012. 6(2): p. 80‐92.
56. Eibe Frank, M.A.H., and Ian H. Witten, Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Fourth Edition, 2016,2016.