簡易檢索 / 詳目顯示

研究生: 嚴慧婷
Yen, Hui-Ting
論文名稱: 膽固醇的添加對於離子對雙親分子/雙十六碳鏈陰離子型脂質混合Langmuir單分子層行為的影響
The effect of cholesterol addition on the mixed Langmuir monolayer behavior of ion pair amphiphile/dihexadecyl chain anionic lipid
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 132
中文關鍵詞: 氣/液界面離子對雙親分子混合單分子層單分子層單分子層穩定性
外文關鍵詞: Air/water interface, Ion pair amphiphile, Mixed monolayer, Monolayer, Monolayer stability
相關次數: 點閱:138下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由表面壓-面積及表面電位-面積等溫線、鬆弛曲線和布魯斯特角顯微鏡(Brewster angle microscope)影像,分析分子間交互作用和混合單分子層的穩定性,以探討添加雙十六碳鏈磷酸鹽(dihexadecyl phosphate, DHDP)及膽固醇對於離子對雙親分子(ion pair amphiphile, IPA)hexadecyltrimethylammonium-dodecylsulfate(HTMA-DS)單分子層行為的影響。
    對HTMA-DS/DHDP混合單分子層而言,等溫線與熱力學分析顯示DHDP具有與膽固醇相似的凝縮效應,且HTMA-DS與DHDP分子間以吸引作用為主。此外,在表面壓30 mN/m時,隨著DHDP添加量的增加,混合單分子層在氣/液界面上的穩定性越高。
    從HTMA-DS/膽固醇混合單分子層的等溫線可看出,在分子排列鬆散的狀態下,膽固醇具有相當顯著的凝縮效應。而熱力學分析顯示添加膽固醇於HTMA-DS單分子層中,能增加分子間的吸引作用,且分子排列的規則性較高。此外,由DHDP/膽固醇混合單分子層的等溫線及BAM影像可知,膽固醇似乎會擾亂混合單分子層中分子的排列,熱力學分析則顯示DHDP與膽固醇分子間的作用,小於二者各別相同分子間的作用。
    添加膽固醇於不同莫耳比的HTMA-DS/DHDP混合單分子層中,由等溫線可知當HTMA-DS含量較高時,隨著膽固醇的莫耳分率增加,凝縮效應越明顯。在DHDP含量較高的混合單分子層中,膽固醇的凝縮效應則較不顯著。造成此結果的可能原因為膽固醇與DHDP的分子間作用小於膽固醇與HTMA-DS的分子間作用,或膽固醇分子擾亂了DHDP分子排列的規則性。此外,由單分子層的鬆弛行為可知,添加膽固醇於HTMA-DS/DHDP混合單分子層後,在表面壓30 mN/m的狀態下,混合單分子層的穩定性並不佳,推測是因為膽固醇的固醇環和短碳氫鏈插排在HTMA-DS及DHDP分子間會產生立體障礙,使單分子層中分子排列的配位性不佳。

    This study investigated the effects of added dihexadecyl phosphate (DHDP) and cholesterol on the monolayer behavior of ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), by analyzing the molecular interaction and mixed monolayer stability with the surface pressure-area and surface potential-area isotherms, relaxation curves, and Brewster angle microscopy (BAM) images.
    For the mixed monolayers of HTMA-DS/DHDP, the isotherms and thermodynamic analysis indicated that DHDP possessed the similar condensing effect as cholesterol and the interactions between HTMA-DS and DHDP were mainly attractive. In addition, at a surface pressure of 30 mN/m, the stability of a monolayer at the air/water interface was higher with the increased amount of DHDP.
    From the isotherms of mixed HTMA-DS/cholesterol monolayers, one can find that cholesterol possessed a significant condensing effect when the molecular arrangement was at an expanded state. The thermodynamic analysis indicated that with the addition of cholesterol into the HTMA-DS monolayer, the attractive interaction between the molecules was enhanced and the molecular arrangement became ordered. Besides, the isotherms and BAM images of mixed DHDP/cholesterol monolayers suggested that cholesterol might disturb the molecular packing in the mixed monolayers, and the thermodynamic analysis implied that the interaction between DHDP and cholesterol was smaller than that between the same molecules of DHDP and cholesterol, respectively.
    When adding cholesterol into mixed HTMA-DS/DHDP monolayers with different mixing ratios, one can find from the isotherms that with a higher content of HTMA-DS, the condensing effect became pronounced with increased molar fraction of cholesterol. However, the condensing effect of cholesterol was less significant with a higher content of DHDP in the mixed monolayers. This is probably because the molecular interaction between cholesterol and DHDP was smaller than that of cholesterol and HTMA-DS , or cholesterol might disturb the molecular packing of DHDP molecules. Furthermore, from the monolayer relaxation behavior, one can find that by adding cholesterol into mixed HTMA-DS/DHDP monolayers, the stability of the mixed monolayers at a surface pressure of 30 mN/m was poor. This probably resulted from the mismatch of the molecule arrangement due to the steric barrier induced by inserting the sterol ring and short hydrocarbon chain of cholesterol between HTMA-DS and DHDP molecules.

    中文摘要......... I Abstract......... III 誌謝.........V 目錄.........VI 表目錄.........X 圖目錄.........XI 符號說明.........XVII 第一章 緒論.........1 1-1 前言.........1 1-2 研究動機與目的......... 2 1-3 文獻回顧.........3 1-3-1 氣/液界面上單分子層.........3 1-3-2 表面壓.........4 1-3-3 表面電位.........7 1-3-4 氣/液界面上單分子層中分子聚集結構之形態觀察.........8 1-3-5 DHDP單分子層的行為.........9 1-3-6 混合單分子層中添加膽固醇的影響.........10 第二章 實驗.........17 2-1 藥品.........17 2-2 實驗儀器及理論分析模式.........17 2-2-1 Langmuir槽.........17 2-2-2 表面壓.........18 2-2-3 表面電位.........19 2-2-4 布魯斯特角顯微鏡.........20 2-2-5 熱力學分析模式.........24 2-3 實驗方法.........25 2-3-1 HTMA-DS的製備.........25 2-3-2 藥品的配製.........26 2-3-3 單分子層等溫線實驗.........26 2-3-4 單分子層鬆弛曲線的測量.........27 2-3-5 布魯斯特角顯微鏡的操作.........28 第三章 結果與討論.........39 3-1 HTMA-DS單分子層.........39 3-1-1 π-A與∆V-A等溫線.........39 3-1-2 表面形態.........40 3-2 HTMA-DS/DHDP混合單分子層.........42 3-2-1 π-A與∆V-A等溫線.........42 3-2-2 熱力學分析.........44 3-2-3 表面形態.........46 3-2-4 鬆弛行為.........48 3-2-5 添加DHDP對HTMA-DS單分子層的影響.........49 3-3 HTMA-DS/膽固醇混合單分子層.........50 3-3-1 π-A與∆V-A等溫線.........50 3-3-2 熱力學分析.........52 3-3-3 表面形態.........53 3-3-4 鬆弛行為.........55 3-3-5 添加膽固醇對HTMA-DS單分子層的影響.........56 3-4 DHDP/膽固醇混合單分子層......... 56 3-4-1 π-A與∆V-A等溫線.........56 3-4-2 熱力學分析.........58 3-4-3 表面形態.........59 3-4-4 鬆弛行為.........61 3-4-5 添加膽固醇對DHDP單分子層的影響.........61 3-5 HTMA-DS/DHDP/膽固醇混合單分子層.........62 3-5-1 HTMA-DS/DHDP = 9/1混合單分子層.........62 3-5-1-1 π-A與∆V-A等溫線.........62 3-5-1-2 熱力學分析.........63 3-5-1-3 表面形態.........64 3-5-1-4 鬆弛行為.........66 3-5-2 HTMA-DS/DHDP = 7/3混合單分子層.........66 3-5-2-1 π-A與∆V-A等溫線.........66 3-5-2-2 熱力學分析.........67 3-5-2-3 表面形態.........68 3-5-2-4 鬆弛行為.........69 3-5-3 HTMA-DS/DHDP = 5/5混合單分子層.........70 3-5-3-1 π-A與∆V-A等溫線.........70 3-5-3-2 熱力學分析.........71 3-5-3-3 表面形態.........72 3-5-3-4 鬆弛行為.........73 3-5-4 添加膽固醇對HTMA-DS/DHDP單分子層的影響.........73 第四章 結論.........122 參考文獻.........124 自述.........132

    Adamson, N. K., and Jessop, G., “Structure of films. XI. oxygennated derivatives of benzene,” Proceedings of the Royal Society A 119, 628-644, 1928.
    Aida, T., Yamamoto, T., Yang, W. O., Manaka, T., and Iwamoto, M., “Study of domain shapes and orientational structure of phospholipid monolayers using Maxwell displacement current and Brewster angle microscopy,” Japanese Journal of Applied Physics 47, 411-415, 2008.
    Birdi, K. S., Self-assembly monolayer structure of lipids and macromolecules at interfaces, Kluwer Academic/Plenum, New York, 1999, Chapter 2.
    Bonn, M., Roke, S., Berg, O., Juurlink, L. B. F., Stamouli, A., and Müller, M., “A molecular view of cholesterol-induced condensation in a lipid monolayer,” Journal of Physical Chemistry B 108, 19083-19085, 2004.
    Bramer, T., Dew, N., and Edsman, K., “Pharmaceutical applications for catanionic mixtures,” Journal of Pharmacy and Pharmacology 59, 1319-1334, 2007.
    Chattoraij, D. K., and Birdi, K. S., “Adsorption and the Gibbs surface excess,” Plenum, New York, 1984.
    Claesson, P., Carmona-Ribeiro, A. M., and Kurihara, K., “Dihexadecyl phosphate monolayers: intralayer and interlayer interactions,” Journal of Physical Chemistry 93, 917-922, 1989.
    Dynarowicz, P., and Katarzyna, K., “Molecular interaction in mixed monolayers at the air/water interface,” Advances in Colloid and Interface Science 79, 1-17, 1999.
    Dynarowicz-Łątka, P., Dhanabalan, A., and Oliverira, O. N., Jr., “Modern physicochemical research on Langmuir monolayers,” Advances in Colloid and Interface Science 91, 221-293, 2001.
    Feng , S. S., “Interpretation of mechanochemical properties of lipid bilayer vesicles from the equation of state or pressure-area measurement of the monolayer at the air-water or oil-water interface,” Langmuir 15, 998-1010, 1999.
    Feng , S. S., and MacDonald, R. C., “Effects of chain unsaturation on the equation of state for lipid monolayers at the air-water interface,” Biophysical Journal 69, 460-469, 1995.
    Gehlert, U., and Vollhardt, D.,“ Nonequilibrium structures in 1-monopalmitoyl-rac-glycerol monolayers,” Langmuir 13, 277-282, 1997.
    Gershfeld, N. L., and Pagano, R. E., “Physical chemistry of lipid films at the air-water interface. III. The condensing effect of cholesterol. A critical examination of mixed-film studies,” Journal of Physical Chemistry 76, 1244-1249, 1972.
    Goodrich, F. C., in “Proceedings of the second international congress of surface activity,” Schulman, J. H., Ed.: Butterworths Press: London, 1957, Volume 1.
    Gunarsa , C. A.,“含雙十六碳鏈磷酸鹽之陰陽離子液胞的物理穩定性及維他命E包覆效率,”國立成功大學化學工程學系碩士論文,2010。
    Györary, E., Albers, W. M., and Petonen, J., “Miscibility in binary monolayers of phospholipid and linker lipid,” Langmuir 15, 2516-2524, 1999.
    Hossain, Md. M., and Kato, T.,“Line tension induced instability of condensed domains formed in adsorbed monolayers at the air-water interface,” Langmuir 16, 10175-10183, 2000.
    Iimura, K., Yamauchi, Y., Tsuchiya, Y., Kato, T., and Suzuki, M., “Two-dimensional dendritic growth of condensed phase domains in spread monolayers of cis-unsaturated fatty acids,” Langmuir 17, 4602-4609, 2001.
    Johann, R., Vollhardt, D., and Möhwald, H.,“Faceting of monolayer domains,” Colloid and Polymer Science 278, 104-113, 2000.
    Kaler, E. W., Murthy, A. K., Rodriguez, B. E., and Zasadzinski, J. A., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science 245, 1371-1374, 1989.
    Lasic, D. D., Liposomes in gene delivery, CRC Press, New York, 1997.
    Lasic, D. D., and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Solid State and Materials Science 1, 392-400, 1996.
    Leathes, J. B., “Condensing effect of cholesterol on monolayers,” Lancet 208, 853-856, 1925.
    Lee, K. Y. C., Gopal, A., Nahmen, A. V., Zasadzinski, J. A., Majewski, J., Smith, G.S., Howes, P. B., and Kjaer, K., “Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface,” Journal of Chemical Physics 116, 774-783, 2002.
    Leonenko, Z., Rodenstein, M., Döhner, J., Eng, L. M., and Amrein, M., “Electrical surface potential of pulmonary surfactant,” Langmuir 22, 10135-10139, 2006.
    Lheveder, C., Henon, S., and Meunier, J., In physical chemistry of biological interfaces, A. Baszkin and W. Norde Eds., Marcel Dekker, New York, 2000, Chapter 16.
    Ma, G., and Allen, H. C., “Condensing effect of palmitic acid on DPPC in mixed monolayers,” Langmuir 23, 589-597, 2007
    MacDonald, R.C., in: M. Rosoff, ed., Vesicles, Marcel Dekker, New York, 1996, Chapter 1.
    Marques, E. F., Regev, O., Khan, A., and Lindman, B., “Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science 100, 83-104, 2003.
    Marsh, D., and Smith, I.C.P., “An interaction spin label study of the fluidizing and condensing effects of cholesterol on lecithin bilayers,” Biochimica et Biophysica Acta 298, 133-144, 1973.
    McConnell, H. M., and Koker, R. D.,“Equilibrium thermodynamics of lipid monolayer domain,” Langmuir 12, 4897-4904, 1996.
    McConnell, H. M., and Radhakrishnan, A., “Condensed complexes of cholesterol and phospholipids,” Biochimica et Biophysica Acta 1610, 159-173, 2003.
    Montanha, E., Pavinatto, F., Caseli, L., Kaczmarek, O., Liebscher, J., Huster, D., and Oliveira Jr., O., “Properties of lipophilic nucleoside monolayers at the air–water interface,” Colloids and Surfaces B: Biointerfaces 77, 161-165, 2010.
    Myers, D., Surfaces, interfaces, and colloids: principles and applications, VCH, 1999, Chapter 8.
    New, R. R. C., Liposomes: a practical approach, Oxford University Press, New York, 1990, Chapter 1.
    Oliverira, O. N., Jr., and Bonardi, C., “The surface potential of Langmuir monolayers revisited,” Langmuir 13, 5920-5924, 1997.
    Penacorada, F., Reiche, J., Katholy, S., Brehmer, L., and Rodriguez-Mendez, M. L., “Monolayers and multilayers of uranyl arachidate. 1. Study of the interaction of dissolved uranyl ions with arachidic acid Langmuir monolayers,” Langmuir 11, 4025-4030, 1995.
    Rigoletto, T. d. P., Zaniquelli, M. E. D., Santana, H. A., and Torre, L. G. d. l., “Surface miscibility of EPC/DOTAP/DOPE in binary and ternary mixed monolayers,” Colloids and Surfaces B: Biointerfaces 83, 260-269, 2011.
    Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., and Karttunen, M., “Ordering effects of cholesterol and its analogues,” Biochimica et Biophysica Acta 1788, 97-121, 2009.
    Rosen, M. J., Surfactants and interfacial phenomena, 2nd ed., John Wiley and Sons, 2004, Chapter 2.
    Seoane, R., Minõnes, J., Conde, O., Minõnes, J., Jr., Casas, M., and Iribarnegaray, E., “Thermodynamic and Brewster angle microscopy studies of fatty acid/cholesterol mixtures at the air/water interface,” Journal of Physical Chemistry B 104, 7735-7744, 2000.
    Shah, D. O., and Schulman, J. H., “Binding of metal ions to monolayersof lecithins, plasmalogen, cardiolipin, and dicetyl phosphate,” Journal of Lipid Research 6, 341-349, 1965.
    Shah, D. O., and Schulman, J. H., “Influence of calcium, cholesterol, and unsaturation on lecithin monolayers,” Journal of Lipid Research 8, 215-226, 1967.
    Subramaniam, S., and McConnell, H. M., “Critical mixing in monolayer mixtures of phospholipid and cholesterol,” Journal of Physical Chemistry 91, 1715-1718, 1987.
    Taylor, D., “Developments in the theoretical modelling and experimental measurement of the surface potential of condensed monolayers,” Advances in Colloid and Interface Science 87, 183-203, 2000.
    Tondre, C., and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science 93, 115-134, 2001.
    Viseu, M. I., Gonçalves da Silva, A. M., and Costa, S. M. B., “Reorganization and desorption of catanionic monolayers. Kinetics of π-t and A-t relaxation,” Langmuir 17, 1529-1537, 2001.
    Vollhardt, D., and Retter, U.,“Nucleation in insoluble monolayers. 1. Nucleation and growth model for relaxation of metastable monolayers,” Journal of Physical Chemistry 95, 3723-3727, 1991.
    Weidemann, G., and Vollhardt, D.,“Long-range tilt orientational order in fatty acid ethyl ester monolayers,” Langmuir 12, 5114-5119, 1996.
    Więcek, A., Dynarowicz-Łątka, P., Miñones Jr., J., Conde, O., and Casas, M., “Interactions between an anticancer drug - edelfosine - and cholesterol in Langmuir monolayers,” Thin Solid Films 516, 8829-8833, 2008.
    Wydro, P., “The magnitude of condensation induced by cholesterol on the mixtures of sphingomyelin with phosphatidylcholines-Study on ternary and quaternary systems,” Colloids and Surfaces B: Biointerfaces 82, 594-601, 2011.
    Xie, A. J., Shen, Y. H., Xia, B., Chen, H. B., and Ouyang, J. M., “Thermodynamic studies of bilirubin/cholesterol mixtures at the air/water interface,” Thin Solid Films 472, 227-231, 2005.
    Yeagle, P. L., “Cholesterol and the cell membrane,” Biochimica et Biophysica Acta 822, 267-287, 1985.
    Zhao, L., and Feng, S. S., “Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air-water interface,” Journal of Colloid and Interface Science 300, 314-326, 2006.
    Zhou, N. F., and Neuman, R. D., “Dihexadecyl phosphate monolayers at the heptane/water interface:model interfacial system for solvent extraction studies,” Colloids and Surfaces 63, 201-207, 1992.
    林冠豪,“帶電的陰陽離子液胞之製備及物理穩定性研究,”國立成功大學化學工程學系碩士論文,2004。
    周宗翰,“含DPPC之混合單分子層的分子間交互作用,”國立成功大學化學工程學系碩士論文,1999。

    下載圖示 校內:2013-08-04公開
    校外:2013-08-04公開
    QR CODE