簡易檢索 / 詳目顯示

研究生: 李元亨
Li, Yuan-Heng
論文名稱: 二氧化碳地質封存引起斷層再活動之數值模擬研究
Numerical Simulation Study of Fault Reactivation in CO2 Geological Storage
指導教授: 謝秉志
Hsieh, Bieng-Zih
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 168
中文關鍵詞: 斷層滑移誘發地震活動岩石力學
外文關鍵詞: Fault slip, Induced seismicity, Geomechanics
相關次數: 點閱:76下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減緩地球暖化及因應氣候變遷,二氧化碳地質封存是有效減低二氧化碳排放量的方法之一,透過將二氧化碳注入至深部鹽水層等合適構造進行封存,而達到二氧化碳減量與減緩溫室效應的目標。二氧化碳地質封存的安全性,需要考慮流體力學與岩石力學等反應機制的交互作用,若封存場址內存在既有斷層,將二氧化碳注入於地層中會有引起斷層再活動以及誘發地震之風險。
    本研究的主要目的是利用數值模擬法評估既有斷層受二氧化碳封存而產生再活動之可能性,基於耦合多相流體流動與岩石力學模組的多成分模擬器CMG-GEM,建立因二氧化碳封存而引起斷層再活動之模擬技術,模擬斷層再活動之行為及評估因斷層再活動而誘發地震活動之地震規模。
    本研究提出結合基於Mohr–Coulomb屈服面的廣義塑性模型與節理岩石模型之計算方法,利用節理岩石模型模擬斷層帶變形之各向異性行為,並用廣義塑性模型模擬斷層再活動時的彈塑性行為以及黏滑行為,此方法能用於模擬因二氧化碳地質封存而產生的斷層再活動行為。此外,依據岩石力學的計算結果,能夠用來量化因斷層再活動而誘發的地震活動之地震規模。
    研究結果顯示,當地層內的流體壓力因二氧化碳注入而升高至一定幅度時,既有斷層與儲集層相交的部分會發生破壞,並連帶影響到部分儲集層上下方的斷層區段,產生斷層再活動。敏感度分析結果顯示斷層再活動會受斷層帶內的流體流動特性影響,斷層再活動僅會發生在斷層帶滲透率為半透性的情境下。當斷層帶的垂直滲透率改變時,斷層滑移量與破裂寬度會隨之變大或變小。此外,如果注入井與斷層之間的距離變近,則最大斷層滑移量和破裂寬度會隨之變大。

    In order to reduce global warming and combat climate change, CO2 geological storage (CGS) is an effective method to reduce anthropogenic CO2 emissions. The CGS method is to inject CO2 into an appropriate geological formation from preventing CO2 releasing to the atmosphere. For the safety of the CGS, understanding the interaction of the geomechanics and fluid flow is critical. If there is a pre-existing fault near the storage reservoir, the possibility of the effects of the fluid injection on the faults must be evaluated. The safety of the CGS will be affected by the induced seismicity and the fault reactivation.
    The purpose of this study is to use numerical simulation method to evaluate the possibility of the pre-existing fault being reactivated by CO2 storage. Based on the compositional simulator CMG-GEM which is coupled reservoir simulation with and geomechanical module, the approach of simulating the fault reactivation caused by CO2 geological storage is established in this study. The approach allows us to model the behavior of fault slip and to estimate the related induced seismicity.
    The approach combining the generalized plasticity model based on the Mohr–Coulomb yield surface with the jointed rock model is proposed in this study. The anisotropic deformation behavior of fault is modeled by the jointed rock model. The slip‐weakening behavior and the elastic-plastic behavior of fault can be captured by the generalized plasticity with softening friction. Moreover, the seismic moment magnitude of the induced seismicity caused by fault activation can be calculated from the geomechanical results
    The results based on a hypothetical site show that fault reactivation occurs along the fault portion intersecting the reservoir when a sufficiently high fluid pressure has been reached. Due to the reactivation of the fault portion inside the reservoir, the points of fault portion underneath the reservoir become failure gradually. The ruptured zone affects the fault portion both inside the reservoir and in the bottom caprock. The results of sensitivity analysis show that fault reactivation is sensitive to the fluid flow properties. The fault reactivation may occur when the permeability of fault zone is semipermeable. When the vertical permeability of the fault zone getting bigger, the slip and the rupture width getting large. Besides, if the distance between injection well and fault getting shorter, the maximum fault slip and rupture width getting larger.

    Abstract I 中文摘要 II 誌謝 III Contents IV List of Tables VI List of Figures VII Nomenclature XIV Chapter 1 Introduction 1 1-1 Greenhouse Effect and Climate Change 1 1-2 CO2 Geological Storage 5 1-3 CCS Facility 9 1-4 Numerical Simulation of CO2 Geological Storage 11 1-5 Risks of CO2 Geological Storage 12 1-6 Induced Seismicity 15 1-7 Motivation 19 1-8 Purposes 20 Chapter 2 Literature Review 21 2-1 Geomechanical Simulation of CO2 Storage 21 2-2 Fault Zone Structure and Properties 23 2.2.1 Fault Zone Structure 23 2.2.2 Fault Zone Properties 27 2-3 Fault Reactivation 31 2-4 Induced Seismicity 36 2-5 Summary 39 Chapter 3 Methodology 40 3-1 Numerical simulation 40 3-1-1 Introduction of CMG GEM simulator 40 3-1-2 Equation of state (EOS) of Fluid 40 3-1-3 Flow Equations 42 3-1-4 Phase-Equilibrium Equations and Saturation Equation 44 3-1-5 Solution Method 45 3-2 CO2 Trapping Mechanism 46 3-3 Geomechanics 48 3-3-1 Stress 48 3-3-2 Strain 50 3-3-3 Elastic Constitutive Model 51 3-3-4 The Deformation of Brittle Rock 53 3-3-5 The Mechanism of Faulting 57 3-3-6 Generalized Plasticity Model 59 3-3-7 Jointed Rock Model 63 3-3-8 Geomechanical Calculation and Coupling 66 3-4 Estimation of the Seismic Moment and Magnitude 69 Chapter 4 Study process and Simulation Designs 70 4-1 Study Process and Simulation Model Construction Workflow 70 4-2 Numerical Simulation Model 72 4-2-1 Reservoir Description 72 4-2-2 Component 74 4-2-3 Rock-fluid 75 4-2-4 Initial Condition 76 4-2-5 Geomechanic 78 4-2-6 Well and Recurrent Section 82 Chapter 5 Results and Discussion 83 5-1 Base Case 83 5-2 Comparison of The Base Case with Cappa and Rutqvist (2011a) 94 5-3 Comparison of the 2D Model with 3D Model 100 5-4 Sensitivity Analysis 110 5-4-1 The Permeability Multiplier 110 5-4-2 The Permeability of The Fault Zone 114 5-4-3 The Permeability Anisotropy of The Fault Zone 121 5-4-4 The Critical Effective Plastic Strain 128 5-4-5 The Distance Between Injection Well and Fault 133 5-4-6 The Orientation of Injection Well 144 Chapter 6 Conclusions and Suggestions 154 6-1 Conclusions 154 6-2 Suggestions 155 References 156

    1. Altaf, I., Towler, B., Underschultz, J., Hurter, S., & Johnson, R. (2018). A Review of Current Knowledge with Geomechanical Fault Reactivation Modelling: The Importance of CO2 Mechano-Chemical Effects for CO2 Sequestration. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition.
    2. Altmann, J., Müller, B., Müller, T., Heidbach, O., Tingay, M., & Weißhardt, A. (2014). Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation. Geothermics, 52, 195-205.
    3. Andrews, D. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679-5687.
    4. Andrews, D. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research: Solid Earth, 110(B1).
    5. Bachu, S. (2000). Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy conversion and management, 41(9), 953-970.
    6. Bachu, S. (2003). Screening and ranking of sedimentary basins for sequestration of CO 2 in geological media in response to climate change. Environmental Geology, 44(3), 277-289.
    7. Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy conversion and management, 35(4), 269-279.
    8. Baklid, A., Korbol, R., & Owren, G. (1996). Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. Paper presented at the SPE Annual Technical Conference and Exhibition.
    9. Bauer, J. F., Meier, S., & Philipp, S. L. (2015). Architecture, fracture system, mechanical properties and permeability structure of a fault zone in Lower Triassic sandstone, Upper Rhine Graben. Tectonophysics, 647, 132-145.
    10. Bubshait, A., Aminzadeh, F., & Jha, B. (2018). An Integrated Framework of Stress Inversion and Coupled Flow and Geomechanical Simulation for 4D Stress Mapping. Paper presented at the SPE Western Regional Meeting.
    11. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028.  
    12. Cappa, F., & Rutqvist, J. (2011a). Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38(17).
    13. Cappa, F., & Rutqvist, J. (2011b). Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. International Journal of Greenhouse Gas Control, 5(2), 336-346.
    14. Castelletto, N., Gambolati, G., & Teatini, P. (2013). Geological CO2 sequestration in multi‐compartment reservoirs: Geomechanical challenges. Journal of Geophysical Research: Solid Earth, 118(5), 2417-2428.
    15. Chang, K., & Segall, P. (2016). Injection‐induced seismicity on basement faults including poroelastic stressing. Journal of Geophysical Research: Solid Earth, 121(4), 2708-2726.
    16. Chen, R., Xue, X., Yao, C., Datta-Gupta, A., King, M. J., Hennings, P., & Dommisse, R. (2018). Coupled Fluid Flow and Geomechanical Modeling of Seismicity in the Azle Area North Texas. Paper presented at the SPE Annual Technical Conference and Exhibition.
    17. Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research: Solid Earth, 98(B1), 771-786.
    18. Chin, L., Raghavan, R., & Thomas, L. (1998). Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. Paper presented at the SPE International Oil and Gas Conference and Exhibition in China.
    19. CMG. (2018a). User’s Guide: GEM Advanced Compositional Reservoir Simulator. Calgary, Alberta, Canada.
    20. CMG. (2018b). User’s Guide: WinProp Phase-Behavior & Fluid Property Program. Calgary, Alberta, Canada.
    21. Collins, D., Nghiem, L., Li, Y., & Grabonstotter, J. (1992). An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE reservoir engineering, 7(02), 259-264.
    22. Collins, G. S., Melosh, H. J., & Ivanov, B. A. (2004). Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science, 39(2), 217-231.
    23. Corey, A. T. (1954). The interrelation between gas and oil relative permeabilities. Producers monthly, 19(1), 38-41.  
    24. Couples, G., Lewis, H., Olden, P., Workman, G., & Higgs, N. (2007). Insights into the faulting process from numerical simulations of rock-layer bending. Geological Society, London, Special Publications, 289(1), 161-186.
    25. Crawford, B., Faulkner, D., & Rutter, E. (2008). Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz‐clay fault gouge. Journal of Geophysical Research: Solid Earth, 113(B3).
    26. Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168.
    27. Dieterich, J. H., Richards‐Dinger, K. B., & Kroll, K. A. (2015). Modeling injection‐induced seismicity with the physics‐based earthquake simulator RSQSim. Seismological Research Letters, 86(4), 1102-1109.
    28. Emami-Meybodi, H., Hassanzadeh, H., Green, C. P., & Ennis-King, J. (2015). Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments. International Journal of Greenhouse Gas Control, 40, 238-266.
    29. Fan, Z., Eichhubl, P., & Gale, J. F. (2016). Geomechanical analysis of fluid injection and seismic fault slip for the Mw4. 8 Timpson, Texas, earthquake sequence. Journal of Geophysical Research: Solid Earth, 121(4), 2798-2812.
    30. Farrell, N., Healy, D., & Taylor, C. (2014). Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 63, 50-67.
    31. Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., & Withjack, M. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557-1575.
    32. Faulkner, D., Lewis, A., & Rutter, E. (2003). On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367(3-4), 235-251.
    33. Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438-514.  
    34. Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., & Kiær, A. F. (2017). 20 Years of Monitoring CO2-injection at Sleipner. Energy procedia, 114, 3916-3926.
    35. Gerbault, M., Poliakov, A. N., & Daignieres, M. (1998). Prediction of faulting from the theories of elasticity and plasticity: what are the limits? Journal of Structural Geology, 20(2-3), 301-320.
    36. Global CCS Institute. (2018). The Global Status of CCS: 2018. Australia.
    37. Global CCS Institute. (2019). CO2RE Database. doi:https://CO2RE.co.
    38. Goertz-Allmann, B. P., Kühn, D., Oye, V., Bohloli, B., & Aker, E. (2014). Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site. Geophysical Journal International, 198(1), 447-461.
    39. Guimaraes, L. d. N., Gomes, I. F., & Valadares, J. (2009). Influence of Mechanical Constitutive Model on the Coupled Hydro Geomechanical Analysis of Fault Reactivation. Paper presented at the SPE Reservoir Simulation Symposium.
    40. Hajiabdolmajid, V., Kaiser, P., & Martin, C. (2002). Modelling brittle failure of rock. International Journal of Rock Mechanics and Mining Sciences, 39(6), 731-741.
    41. Harvey, O. R., Qafoku, N. P., Cantrell, K. J., Lee, G., Amonette, J. E., & Brown, C. F. (2012). Geochemical implications of gas leakage associated with geologic CO2 storage A qualitative review. Environmental science & technology, 47(1), 23-36.
    42. Hawkes, C., McLellan, P., & Bachu, S. (2005). Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. Journal of Canadian Petroleum Technology, 44(10).
    43. HiQuake. (2019). The Human-Induced Earthquake Database. Retrieved from https://inducedearthquakes.org
    44. Huang, T., Chang, C., & Yang, Z. (1995). Elastic moduli for fractured rock mass. Rock Mechanics and Rock Engineering, 28(3), 135-144.
    45. Ida, Y. (1972). Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy. Journal of Geophysical Research, 77(20), 3796-3805.
    46. IEA. (2017). Energy Technology Perspectives 2017. Paris: OECD/IEA.
    47. IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. In Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.
    48. IPCC. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri and LA Meyer (eds.)]. IPCC, Geneva, Switzerland.
    49. IPCC. (2018). Global warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
    50. IPCC. (2019, 2019/3/12). About the IPCC. Retrieved from https://www.ipcc.ch/about/
    51. Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2007). Fundamentals of rock mechanics (4th ed.): Blackwell Publishing Ltd.
    52. Jeanne, P., Guglielmi, Y., Rutqvist, J., Nussbaum, C., & Birkholzer, J. (2017). Field characterization of elastic properties across a fault zone reactivated by fluid injection. Journal of Geophysical Research: Solid Earth, 122(8), 6583-6598.
    53. Jha, B., & Juanes, R. (2014). Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering. Water Resources Research, 50(5), 3776-3808.
    54. Jones, D., Beaubien, S., Blackford, J., Foekema, E., Lions, J., De Vittor, C., . . . Queirós, A. (2015). Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. International Journal of Greenhouse Gas Control, 40, 350-377.
    55. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981-2987.
    56. Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073-1095.
    57. Kaven, J., Hickman, S. H., McGarr, A. F., & Ellsworth, W. L. (2015). Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site. Seismological Research Letters, 86(4), 1096-1101.
    58. Kim, W. Y. (2013). Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research: Solid Earth, 118(7), 3506-3518.
    59. Krevor, S., Blunt, M. J., Benson, S. M., Pentland, C. H., Reynolds, C., Al-Menhali, A., & Niu, B. (2015). Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control, 40, 221-237.
    60. Kumar, A., Noh, M. H., Ozah, R. C., Pope, G. A., Bryant, S. L., Sepehrnoori, K., & Lake, L. W. (2005). Reservoir simulation of CO 2 storage in aquifers. Spe Journal, 10(03), 336-348.
    61. Land, C. S. (1968). Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal, 8(02), 149-156.
    62. Lee, H., Shinn, Y. J., Ong, S. H., Woo, S. W., Park, K. G., Lee, T. J., & Moon, S. W. (2017). Fault reactivation potential of an offshore CO2 storage site, Pohang Basin, South Korea. Journal of Petroleum Science and Engineering, 152, 427-442.
    63. MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., Van Ommen, T., . . . Elkins, J. (2006). Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters, 33(14).
    64. Mandl, G. (1988). Mechanics of tectonic faulting: Elsevier Amsterdam.
    65. Mandl, G. (1999). Faulting in brittle rocks: an introduction to the mechanics of tectonic faults: Springer Science & Business Media.
    66. Matter, J., Stute, M., Snæbjörnsdottir, S., Oelkers, E., Gislason, S., Aradottir, E., . . . Gunnlaugsson, E. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312-1314.
    67. Matter, J., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration. Geochemistry, Geophysics, Geosystems, 8(2). doi:10.1029/2006gc001427
    68. Mazzoldi, A., Rinaldi, A. P., Borgia, A., & Rutqvist, J. (2012). Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults. International Journal of Greenhouse Gas Control, 10, 434-442.
    69. McClure, M. W., & Horne, R. N. (2011). Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model. Geophysics, 76(6), WC181-WC198.
    70. McGarr, A. (2014). Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth, 119(2), 1008-1019.
    71. McGarr, A., Simpson, D., Seeber, L., & Lee, W. (2002). Case histories of induced and triggered seismicity. International Geophysics Series, 81(A), 647-664.
    72. Morris, A., Ferrill, D. A., & Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), 275-278.
    73. Morrow, C. A., & Byerlee, J. D. (1989). Experimental studies of compaction and dilatancy during frictional sliding on faults containing gouge. Journal of Structural Geology, 11(7), 815-825.
    74. Morrow, C. A., Lockner, D. A., Moore, D. E., & Hickman, S. (2014). Deep permeability of the San Andreas fault from San Andreas fault observatory at depth (SAFOD) core samples. Journal of Structural Geology, 64, 99-114.
    75. Mortezaei, K., & Vahedifard, F. (2015). Numerical simulation of induced seismicity in carbon capture and storage projects. Geotechnical and Geological Engineering, 33(2), 411-424.
    76. National Research Council. (2013). Induced seismicity potential in energy technologies: National Academies Press.
    77. Nghiem, L., Sammon, P., Grabenstetter, J., & Ohkuma, H. (2004). Modeling CO2 storage in aquifers with a fully-coupled geochemical EOS compositional simulator. Paper presented at the SPE/DOE symposium on improved oil recovery.
    78. Nghiem, L., Shrivastava, V., Kohse, B., Hassam, M., & Yang, C. (2010). Simulation and optimization of trapping processes for CO2 storage in saline aquifers. Journal of Canadian Petroleum Technology, 49(08), 15-22.
    79. Nghiem, L., Shrivastava, V., Tran, D., Kohse, B., Hassam, M., & Yang, C. (2009). Simulation of CO2 storage in saline aquifers. Paper presented at the SPE/EAGE Reservoir Characterization & Simulation Conference.
    80. Nghiem, L., Yang, C., Shrivastava, V., Kohse, B., Hassam, M., Chen, D., & Card, C. (2009). Optimization of residual gas and solubility trapping for CO2 sequestration in saline aquifers. Paper presented at the SPE Reservoir Simulation Symposium.
    81. Nghiem, L. X., Fong, D., & Aziz, K. (1981). Compositional Modeling With an Equation of State (includes associated papers 10894 and 10903). Society of Petroleum Engineers Journal, 21(06), 687-698.  
    82. Nicholson, C., & Wesson, R. L. (1992). Triggered earthquakes and deep well activities. Pure and applied Geophysics, 139(3-4), 561-578.
    83. Norbeck, J. H., & Horne, R. N. (2018). Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults. Tectonophysics, 733, 108-118.
    84. Ord, A., BE, H., & Regenauer-Lieb, K. (2004). A smeared seismicity constitutive model. Earth, planets and space, 56(12), 1121-1133.
    85. Pande, G., Beer, G., & Williams, J. (1990). Numerical methods in rock mechanics.
    86. Pawar, R. J., Bromhal, G. S., Carey, J. W., Foxall, W., Korre, A., Ringrose, P. S., . . . White, J. A. (2015). Recent advances in risk assessment and risk management of geologic CO2 storage. International Journal of Greenhouse Gas Control, 40, 292-311.
    87. Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
    88. Pruess, K., García, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., & Xu, T. (2004). Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy, 29(9-10), 1431-1444.
    89. Pruess, K., & Spycher, N. (2007). ECO2N–A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy conversion and management, 48(6), 1761-1767.
    90. Pruess, K., Tsang, C.-F., Law, D., & Oldenburg, C. (2001). Intercomparison of simulation models for CO2 disposal in underground storage reservoirs.
    91. Rice, J. R. (1970). On the structure of stress-strain relations for time-dependent plastic deformation in metals. Journal of applied mechanics, 37(3), 728-737.
    92. Rinaldi, A. P., Jeanne, P., Rutqvist, J., Cappa, F., & Guglielmi, Y. (2014). Effects of fault‐zone architecture on earthquake magnitude and gas leakage related to CO2 injection in a multi‐layered sedimentary system. Greenhouse Gases: Science and Technology, 4(1), 99-120.
    93. Rinaldi, A. P., Rutqvist, J., & Cappa, F. (2014). Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. International Journal of Greenhouse Gas Control, 20, 117-131.
    94. Rinaldi, A. P., Vilarrasa, V., Rutqvist, J., & Cappa, F. (2015). Fault reactivation during CO2 sequestration: Effects of well orientation on seismicity and leakage. Greenhouse Gases: Science and Technology, 5(5), 645-656.
    95. Ringrose, P., Mathieson, A., Wright, I., Selama, F., Hansen, O., Bissell, R., . . . Midgley, J. (2013). The In Salah CO2 storage project: lessons learned and knowledge transfer. Energy procedia, 37, 6226-6236.
    96. Rudnicki, J. W., & Rice, J. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23(6), 371-394.
    97. Rueda, J., Noreña, N., Oliveira, M., & Roehl, D. (2014). Numerical models for detection of fault reactivation in oil and gas fields. Paper presented at the 48th US Rock Mechanics/Geomechanics Symposium.
    98. Rutqvist, J., Birkholzer, J., Cappa, F., & Tsang, C.-F. (2007). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy conversion and management, 48(6), 1798-1807.
    99. Rutqvist, J., Birkholzer, J., & Tsang, C.-F. (2008). Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. International Journal of Rock Mechanics and Mining Sciences, 45(2), 132-143.
    100. Rutqvist, J., Cappa, F., Rinaldi, A., & Godano, M. (2014). Modeling of induced seismicity and ground vibrations associated with geologic CO2 storage, and assessing their effects on surface structures and human perception. International Journal of Greenhouse Gas Control, 24, 64-77.
    101. Rutqvist, J., Rinaldi, A. P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L., . . . Vilarrasa, V. (2016). Fault activation and induced seismicity in geological carbon storage–Lessons learned from recent modeling studies. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 789-804.
    102. Rutqvist, J., Wu, Y.-S., Tsang, C.-F., & Bodvarsson, G. (2002). A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, 39(4), 429-442.
    103. Samuelson, J., Elsworth, D., & Marone, C. (2009). Shear‐induced dilatancy of fluid‐saturated faults: Experiment and theory. Journal of Geophysical Research: Solid Earth, 114(B12).  
    104. Scibek, J., Gleeson, T., & McKenzie, J. (2016). The biases and trends in fault zone hydrogeology conceptual models: global compilation and categorical data analysis. Geofluids, 16(4), 782-798.
    105. Scripps CO2 Program. (2019, 2019/3/20). Merged Ice-Core Record. Retrieved from http://scrippsco2.ucsd.edu/graphics_gallery/mauna_loa_and_south_pole/merged_ice_core_record
    106. Segall, P., & Lu, S. (2015). Injection‐induced seismicity: Poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120(7), 5082-5103.
    107. Segall, P., & Rice, J. R. (1995). Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. Journal of Geophysical Research: Solid Earth, 100(B11), 22155-22171.
    108. Settari, A., & Mourits, F. (1998). A coupled reservoir and geomechanical simulation system. Spe Journal, 3(03), 219-226.
    109. Shapiro, S., Dinske, C., & Kummerow, J. (2007). Probability of a given‐magnitude earthquake induced by a fluid injection. Geophysical Research Letters, 34(22).
    110. Shapiro, S., Rentsch, S., & Rothert, E. (2005). Fluid-Induced Seismicity: Theory, Modeling, and Applications. Journal of Engineering Mechanics, 131(9), 947-952. doi:doi:10.1061/(ASCE)0733-9399(2005)131:9(947)
    111. Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., & Snelgrove, S. (2002). Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults. AAPG bulletin, 86(5), 863-883.
    112. Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751-754.
    113. Sibson, R. H. (2003). Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3), 1169-1178.
    114. Sitharam, T., Sridevi, J., & Shimizu, N. (2001). Practical equivalent continuum characterization of jointed rock masses. International Journal of Rock Mechanics and Mining Sciences, 38(3), 437-448.
    115. Snæbjörnsdóttir, S. Ó., Oelkers, E. H., Mesfin, K., Aradóttir, E. S., Dideriksen, K., Gunnarsson, I., . . . Gislason, S. R. (2017). The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control, 58, 87-102.  
    116. Soltanzadeh, H., & Hawkes, C. D. (2008). Semi-analytical models for stress change and fault reactivation induced by reservoir production and injection. Journal of Petroleum Science and Engineering, 60(2), 71-85.
    117. Stork, A. L., Verdon, J. P., & Kendall, J.-M. (2015). The microseismic response at the In Salah Carbon Capture and Storage (CCS) site. International Journal of Greenhouse Gas Control, 32, 159-171.
    118. Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research: Solid Earth, 112(B7).
    119. Tanikawa, W., Sakaguchi, M., Tadai, O., & Hirose, T. (2010). Influence of fault slip rate on shear‐induced permeability. Journal of Geophysical Research: Solid Earth, 115(B7).
    120. Tavassoli, S., Xu, Y., & Sepehrnoori, K. (2018). Modeling Fault Reactivation Using Embedded Discrete Fracture Method. Paper presented at the SPE Annual Technical Conference and Exhibition.
    121. Terzaghi, K. (1925). Principles of soil mechanics. Engineering News-Record, 95(19-27), 19-32.
    122. Tran, D., Nghiem, L., Shrivastava, V., & Kohse, B. (2010). Study of geomechanical effects in deep aquifer CO2 storage. Paper presented at the 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium.
    123. Tran, D., Settari, A., & Nghiem, L. (2004). New iterative coupling between a reservoir simulator and a geomechanics module. Spe Journal, 9(03), 362-369.
    124. Tran, D., Shrivastava, V. K., Nghiem, L. X., & Kohse, B. F. (2009). Geomechanical risk mitigation for CO2 sequestration in saline aquifers. Paper presented at the SPE Annual Technical Conference and Exhibition.
    125. UNFCCC. (2015). FCCC/CP/2015/L.9/Rev.1: Adoption of the Paris Agreement.
    126. Urpi, L., Rinaldi, A. P., Rutqvist, J., Cappa, F., & Spiers, C. J. (2016). Dynamic simulation of CO2-injection-induced fault rupture with slip-rate dependent friction coefficient. Geomechanics for Energy and the Environment, 7, 47-65.
    127. Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil science society of America journal, 44(5), 892-898.  
    128. Verdon, J. P., Stork, A. L., Bissell, R. C., Bond, C. E., & Werner, M. J. (2015). Simulation of seismic events induced by CO2 injection at In Salah, Algeria. Earth and Planetary Science Letters, 426, 118-129.
    129. Vermeer, P. A., & De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. HERON, 29 (3), 1984.
    130. Wang, J. H., Hung, J. H., & Dong, J. J. (2009). Seismic velocities, density, porosity, and permeability measured at a deep hole penetrating the Chelungpu fault in central Taiwan. Journal of Asian Earth Sciences, 36(2-3), 135-145.
    131. Wang, S., & Jaffe, P. (2004). Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy conversion and management, 45(18-19), 2833-2848.
    132. White, J. A., & Foxall, W. (2016). Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges. International Journal of Greenhouse Gas Control, 49, 413-424.
    133. Wibberley, C. A., & Shimamoto, T. (2003). Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25(1), 59-78.
    134. Wibberley, C. A., Yielding, G., & Di Toro, G. (2008). Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 299(1), 5-33.
    135. Wilson, E. J., Johnson, T. L., & Keith, D. W. (2003). Regulating the ultimate sink: managing the risks of geologic CO2 storage. In: ACS Publications.
    136. Wiprut, D., & Zoback, M. D. (2000). Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology, 28(7), 595-598.
    137. Worum, G., van Wees, J. D., Bada, G., van Balen, R. T., Cloetingh, S., & Pagnier, H. (2004). Slip tendency analysis as a tool to constrain fault reactivation: A numerical approach applied to three‐dimensional fault models in the Roer Valley rift system (southeast Netherlands). Journal of Geophysical Research: Solid Earth, 109(B2).
    138. Wu, W., Reece, J. S., Gensterblum, Y., & Zoback, M. D. (2017). Permeability evolution of slowly slipping faults in shale reservoirs. Geophysical Research Letters, 44(22).  
    139. Zhang, Y., Gartrell, A., Underschultz, J., & Dewhurst, D. (2009). Numerical modelling of strain localisation and fluid flow during extensional fault reactivation: Implications for hydrocarbon preservation. Journal of Structural Geology, 31(3), 315-327.
    140. Zoback, M. D. (2010). Reservoir geomechanics: Cambridge University Press.
    141. Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences, 109(26), 10164-10168.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE