簡易檢索 / 詳目顯示

研究生: 李俊宏
Li, Chun-hung
論文名稱: 鹼基(黃嘌呤、胸線嘧啶)配對物內相對氫鍵強度與芳香性的理論研究:動態學的研究
Theoretical Characterizations of Relative H-Bonding Strengths and Aromaticities in Nucleobases (Xanthine, Thymine) Pairing:A Dynamics Study
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 87
中文關鍵詞: 氫鍵密度泛涵理論天然鍵性軌域
外文關鍵詞: hydrogen bond, DFT, NBO
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞受到氧化破壞後,DNA (deoxyribonucleic acid) 鹼基中的鳥糞嘌呤 (guanine)會形成黃嘌呤 (xanthine),黃嘌呤與正常鹼基配對之後會導致點突變。鹼基對的分子間氫鍵會影響整個核酸的結構和穩定,因此本實驗室利用Gaussian軟體對黃嘌呤二聚物 (XX) 、胸線嘧啶二聚物(TT) 和兩者的配對錯合物 (XT) 進行一系列的計算研究。
    本研究利用密度泛涵理論(DFT)計算雙氫鍵錯合物中的一組氫鍵的拉長破壞,並使用天然鍵性軌域(NBO),搭配 GaussView 軟體來分析分子穩定能及空間中的結構變化。
    我們發現在其中一組氫鍵拉長後,錯合物的兩個單元會以另一組氫鍵為橋樑而旋轉。且隨著錯合物雙氫鍵兩旁未鍵結氫鍵官能基的不同,分子有可能旋轉或翻轉成之前算出來的同一鹼基對的其他最佳化結構。如TT6轉換成TT4,以及XX6與XX3的互相轉換。之後並確定了透過旋轉,形成含其他類型氫鍵之雙氫鍵錯合物的可能性。

    The noncanonical nucleobases xanthine that is formed from the canonical base guanine by nitrogen loss when a cell is under oxidative stress is an important lesion that leading to point mutations. Hydrogen-bonded base pairs of nucleic acids substantially contribute to the structure and stability of nucleic acids. We do a series of calculating researches in xanthine dimers (XX)、thymine dimers (TT) and pairing complexs of xanthine and thymine (XT) with the help of Gaussian98.
    Our research on the issue is using density functional theory (DFT) to draw apart one of the two hydrogen bonds of the complex containing double hydrogen bonds, then analyzes the variation of stabilization energy and structures with natural bond orbital (NBO) analysis and GaussView software.
    We found that after drawing apart one of the two hydrogen bonds, the two units of the complex will rotate by the other hydrogen bond. Molecules may rotate or overturn to the other optimized structures of the same base pairs, such as TT6 change to TT4, and the interchange between XX6 and XX3. We also confirm that the complex may change to the other structure with different kind of hydrogen bond through rotating.

    摘要.................................................. I Abstract.............................................. Ⅱ 謝誌................................................. III 目錄.................................................. IV 表目錄................................................ VI 圖目錄................................................ VII 第一章 緒論............................................ 1 第二章 理論背景........................................ 2 2-1 氫鍵............................................. 2 2-2 判斷氫鍵......................................... 4 2-3 Xanthine與Thymine雙氫鍵錯合物NBO數值分析........ 4 第三章 計算原理與方法................................. 13 3-1 計算原理........................................ 13 3-1-1 HF 理論方法................................... 13 3-1-2 DFT 理論方法................................. 14 3-1-3 基底......................................... 16 3-1-4 分裂基底..................................... 17 3-1-5 極化函數..................................... 18 3-1-6 擴散函數..................................... 18 3-1-7 限定自洽場與非限定自洽場..................... 19 3-1-8 天然鍵性軌域 (NBO) ......................... 20 3-2 計算方法..................................... 23 3-2-1 選用軟體................................... 23 3-2-2 計算條件.................................... 24 3-2-3 計算流程................................... 24 3-2-4 計算指令..................................... 25 3-2-5 選用基底..................................... 25 第四章 結果與討論.................................... 27 4-1 XX6氫鍵錯合物的單氫鍵破壞動態研究 part1....... 27 4-1-1 XX6與XX3的分子間轉換(molecule interchange)... 27 4-1-2 雙氫鍵錯合物中單氫鍵破壞系統更深入的探討與分析 31 4-2 TT6氫鍵錯合物的單氫鍵破壞動態研究:透過翻轉形成 的雙氫鍵錯合物................................ 32 4-3 非O…H-N類型的氫鍵donor-acceptor pair Part1:XT3氫 鍵錯合物的單氫鍵破壞動態研究.................. 34 4-4 非O…H-N類型的氫鍵donor-acceptor pair Part2:XX6 氫鍵錯合物的單氫鍵破壞動態研究 part2.......... 37 第五章 結論........................................... 40 參考文獻.............................................. 83 附錄A................................................. 87

    1.Kow, Y. W. Free Radical Biol. Med. 2002, 33, 886-893.

    2.Caulfeld, J. L.; Wishnok, J. S.; Tannenbaum, S. R. J. Biol. Chem. 1998, 273, 12689-12695.

    3.(a) Spence, J. P.; Jenner, J.; Chimel, K.; Aruoma, O. I.; Cross, C. E.; Wu R.; Halliwell, B. FEBS Lett. 1995, 375, 179–182.; (b) Spence, J. P.; Wong, J.; Jenner, J.; Aruoma, O. I.; Cross, C. E.; Halliwell, B. Chem. Res. Toxicol. 1996, 9, 1152–1158.

    4.(a) Wuenschell, G. E.; O'Connor, T. R.; Termini, J. Biochemistry 2003, 42, 3608-3616; (b) Stoychev, G.; Kierdaszuk, B.; Shugar, D. Eur. J. Biochem. 2002, 269, 4048-4057; (c) Kreutzer, D. A.; Essigmann, J. M. Oxidized, Proc. Natl. Acad. Sci. USA 1998 , 95, 3578–3582; (d) Purmal, A. A.; Kow, Y. W.; Wallace, S. S. Nucleic Acids Res. 1994, 22, 3930–3935; (e) Flix, D. F.; Glickman, B. W. Mol. Gen. Genet. 1987, 209, 78–82.

    5.Fearon, E. R.; Vogelstein, B. Cell 1990, 61, 759-767.

    6.(a) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991; (b) Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997,Chapter 10; (c) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737-738; (d) Saenger, W. Principles of Nucleic Acid Structure, Springer, New York, 1984; (e) Stryer, L. Biochemistry; Freeman: New York, 1988.

    7.(a) Lewis, J.; Sankey, P. O. F. Biophys. J. 1995, 69, 1068-1076; (b) Kong, Y. S.; Jhon, Löwdin, M. S. P. O. Int. J. Quantum. Chem. Symp. QB 1987, 14, 189; (c) C. Nagata, M. Aida, J. Mol. Struct.(Theochem) 1988, 179, 451-466; (d) Gould, I. R.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 2493-2499; (e) Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965-1974; (f) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol. Struct. Dyn. 1996, 14, 117; (g) Sponer, J.; Hobza, P.; Leszczynski, J. in Computational Chemistry. Reviews of Current Trends (Ed.: Leszczynski, J.), World Scientific Publisher, Singapore, 1996, p.185 - 218; (h) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574-7577; (i) Brameld, K.; Dasgupta, S.; Goddard III, W. A. J. Phys. Chem. B 1997, 101, 4851-4859; (j) Meyer, M.; Sühnel, J. J. Biomol. Struct. Dyn. 1997, 15, 619; (k) Santamaria, R.; Vázquez, A. J. Comp. Chem. 1994, 15, 981-996; (l) Bertran, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159-8167.

    8.(a) Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391-4400; (b) Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. in Theoretical Treatment of Hydrogen Bonding (Ed.: D. Hadzi), Wiley,New York, 1997; (c) Sirois, S.; Proynov, E. I.; Nguyen, D. T.; Salahub, D. R. J. Chem. Phys. 1997, 107, 6770-6781; (d) Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. 1998, 102, 3782-3797; (e) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089-10094;(f) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837-15845; (g) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793-9799; (h) Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705-10707; (i) Florian, J.; Johnson, B. G. J. Phys. Chem. 1995, 99, 5899-5908; (j) Combariza, J. E.; Kestner, N. R. J. Phys. Chem. 1995, 99, 2717; (l) Lozynski, M.; Rusinska-Roszak, D.; Mack, H. G. J. Phys. Chem. 1998, 102, 2899-2903; (m) Chandra, A. K.; Nguyen, M. Chem. Phys. 1998, 232, 299-306; (n) Paizs, B.; Suhai, S. J. Comp. Chem. 1998, 19, 575-584; (o) McAllister, M. A. J. Mol. Struct. (Theochem) 1998, 427, 39-53; (p) Pan, Y. P.; McAllister, M. A. J. Mol. Struct. (Theochem) 1998, 427, 221-227; (k) Civalleri, B.; Garrone, E.; Ugliengo, P. J. Mol. Struc. (Theochem) 1997, 419, 227-238; (q) Gonzalez, L.; Mo, O.; Yanez, M. J. Comp. Chem. 1997, 18, 1124-1135.

    9.Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073.

    10.Hamilton, W. C.; Ibers, J. A. Hydrogrn Bonding in Solids, Benjamin, New York, 1968.

    11.Harris, S. J.; Janda, K.C.; Novick, S. E.; Klemperer, W. J. Chem. Phys. 1975, 63, 881-884.

    12.Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581-3594.

    13.Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.

    14.(a) Goodman, L.; Gu, H. J. Chem. Phys. 1998, 109, 72-78; (b) Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993; (c) Goodman, L.; Gu, H.; Pophristic, V. J. Chem. Phys. 1999, 110, 4268-4275; (d) Pophristic, V.; Goodman, L. Nature 2001, 411, 565-568.

    15.(a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b)Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566. (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855.

    16.Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold F. J. Am. Chem. Soc. 2003, 125, 5973-5987.

    17.(a) Bent, H. A. Chem. Rev. 1961, 61, 275-311; (b) Lemke, F. R.; Galat, K. J. Youngs, W. J. Organometallics 1999, 18, 1419-1429; (c) Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648-3659; (d) Palmer, M. H. J. Mol. Struct. 1997, 405, 179-191; (e) Palmer, M. H. J. Mol. Struct. 1997, 405, 193-205; (f) Jonas, V.; Boehme, C.; Frenking, G. Inorg. Chem. 1996, 35, 2097-2099; (g) Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201-4209; (h) Kaupp, M.; Schleyer, P. V. R. J. Am. Chem. Soc. 1993, 115, 1061-1073; (i) Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981-1988; (j) Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. 1991, 234, 247-267; (k) Kaupp, M. Chem. Eur. J. 1999, 5, 3631-3643.

    18.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al., GAUSSIAN 98, Gaussian, Inc., ittsburgh, PA, 1998.

    19.(a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008-2010; (b) Pranata, J.; Wierschke, S. G.; Jorgensen W. L. J. Am. Chem. Soc. 1991, 113, 2810-2819; (c) Jorgensen, W. L.; Severance, D. L. J. Am. Chem. Soc. 1991, 113, 209-216.

    20.(a) Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142-6148; (b) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.

    21.Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852-4856.

    22.Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974).

    23.(a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871; (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138; (c) Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989) ; (d) Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).

    24.(a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; (b) Becke, A. D. Phys. Rev. 1988, A38, 3098-3100.

    25.Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789.

    26.(a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206; (b) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct.(Theochem) 2000, 507, 153-156; (c) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. (Theochem) 2001, 543, 285-297; (d) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004-11009; (e) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070-7073; (f) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687-5705; (g) Weinhold, F. J. Mol. Struct.(Theochem) 1997, 398, 181-197; (h) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320-7327; (i) Hobza, P.; Sponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286-6292; (j) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49-57; (k) Wilkens, S. J.; Weatler, W. M.; Weinhold, F.; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190-1191.

    27.Rogstad, K. N.; Jang, Y. H.; Sowers, L. C.; Goddard, W. A., III Chem. Res. Toxicol. 2003, 16, 1455-1462.

    28.Hupp, T.; Sturm, C.; Janke, E. M. B.; Cabre, M. P.; Weisz, K.; Engels, B. J. Phys. Chem. A 2005, 109, 1703-1712.

    29.王冠華;成功大學化研所碩士論文;2007

    30.劉挺緯;成功大學化研所碩士論文;2006

    下載圖示 校內:2009-01-30公開
    校外:2011-01-30公開
    QR CODE