| 研究生: |
許書維 Hsu, Shu-Wei |
|---|---|
| 論文名稱: |
雙自由度多變數去耦合控制器之設計 Design of Two-Degree-of-Freedom Multivariable Decoupling Controllers |
| 指導教授: |
黃世宏
Hwang, Shyh-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 雙自由度 、多變數 、去耦合控制器 |
| 外文關鍵詞: | Two-Degree-of-Freedom, Multivariable, Decoupling Controller |
| 相關次數: | 點閱:135 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們提出一個雙自由度多變數去耦合控制器的設計方法,在雙自由度控制架構中使用簡易的去耦合器,以降低環路間交互作用。此雙自由度架構允許設定點追蹤及負載擾動排除控制器被分別獨立地設計,完美解決單自由度控制器無法兼顧兩者的常見缺點。本設計法比傳統雙自由度控制器設計法更具便利性,後者必須先設計完負載擾動排除控制器,才能設計設定點追蹤控制器。
在多變數控制系統中,完美去耦合器的加入,可以產生多個獨立的單變數控制環路,但實際的去耦合器往往只能減輕卻無法完全消除環路間交互作用。因此我們採用順序設計法來決定各個控制環路的PI或PID控制器參數,以進一步降低交互作用對負載擾動排除的影響。針對設定點追蹤,我們使用基於Laguerre展開式之鑑別法將去耦合後程序近似成多個三階轉移函數,再利用轉移函數之可逆轉部份來設計相關控制器。
In this thesis, we propose a design method for two-degree-of-freedom multivariable decoupling controllers. In the two-degree-of-freedom control structure, simple decouplers are employed to reduce interactions among loops. This two-degree-of-freedom structure allows the controller for set-point tracking and the controller for load disturbance rejection to be designed independently. This perfectly resolves the common disadvantage that a one-degree-of-freedom controller cannot deal with set-point tracking and load disturbance rejection simultaneously. The proposed design method is more convenient than a traditional two-degree-of-freedom controller design method in that the latter must design the controller for load disturbance rejection first, and then design the controller for set-point tracking.
In a multivariable control system, the incorporation of perfect decouplers produces several independent single-variable control loops. However, practical decouplers can only mitigate but cannot completely eliminate interactions among loops. Therefore, we introduce a sequential design method to determine the PI/PID controller parameters of every control loop. This could further reduce the effect of interactions on load disturbance rejection. For set-point tracking, we apply an identification method based on Laguerre expansions to approximate the decoupled process by several third-order transfer functions, and then design the corresponding controller using the invertible parts of the transfer functions.
Alatiqi, I.M. and Luyben, W.L. “Control of a Complex Sidestream Column/Stripper Distillation Configuration,” Ind. Eng. Chem. Process Des. Dev. 25, 762-767 (1986).
Bristol, E.H. “On a New Measure of Interaction for Multivariable Process Control,” IEEE Trans. Auto. Control., 11, 133-134 (1966).
Bristol, E.H. “Dynamic Effect of Interaction, “IEEE Trans. Automatica Control., 1096-1100 (1977).
Bao, J., Forbes, J.F., and McLellan, P.J. “Robust Multiloop PID Controller Design: A Sucessive Semidefinite Programming Approach,” Ind. Eng. Chem. Res., 38, 3407-3419 (1999).
Chen, H.T., Hwang, S.H. and Chang, C.T. “Iterative Identification of Continuous-Time Hammerstein and Wiener Systems Using a Two-Stage Estimation Algorithm,” Ind. Eng. Chem. Res., 48, 1495-1510 (2009).
Chien, I.L., Huang, H.P., and Yang, J.C. “A Simple Multiloop Tuning for PID Controllers with No Proportional Kick,” Ind. Eng. Chem. Res., 38, 1456-1468 (1999).
Chien, I.L., Huang, H.P., and Yang, J.C. “A Simple TITO Method Suitable for Industrial Application,” Chem. Eng. Comm., 12, 391-404 (2000).
Garcia, C.E., and Morari, M. “Internal Model Control.2:Design Procedure for Multivariable Systems,” Ind. Eng. Chem. Process Des. Dev., 24, 427-484 (1985).
Grosdidier, P. and Morari, M. “Interaction Measures for Systems Under Decentralized Controllers,” Automatica , 22 , 309-319 (1986).
Hovd, M. and Skogestad, S. “Sequential Design of Decentralized Controllers,” Automatica, 30, 1601-1607 (1994).
Hugo, A. “Liminations of Model Predictive Controllers,” Hydrocarbon Process, 79, 83-88 (2000).
Hwang, S.H. “Closed-Loop Automatic Tuning of Single-Input-Single-Output Systems,” Ind. Eng. Chem. Res., 34, 2406-2417 (1995).
Hwang, S.H. “Geometric Interpretation and Measures of Dynamic Interaction in Multivariable Control Systems,” Ind. Eng. Chem. Res., 34, 225-236 (1995).
Hwang, S.H., Hsieh, C.Y., Chen, H.T., Huang, Y.C., “Use of Discrete Laguerre Expansion for Noniterative Identification of Nonlinear Wiener Models,” Ind. Eng. Chem. Res., 50, 1427-1438 (2011).
Huang, H.P., Jeng, J.C., Chiang, C.H. and Pan, W. “A Direct Method for Multi-Loop PI/PID Controller Design,” J. of Process Control, 13, 769-786 (2003).
Jeng, J.C. and Huang, H.P. “Model-Based Autotuning Systems with Two-Degree-of-Freedom Control,” J. Chin. Inst. Chem. Engrs., 37, 1, 95-102 (2006).
Keviczky, L. and Banyasz, Cs. “A Simple Youla-Parametrized MIMO Regulator,” 12th IASTED international Conference, Banff, Alberta, CANADA. 497-501 (2010).
Lee, J., Cho, W., and Edgar, T.F. “Multiloop PI Controller Tuning for Interacting Multivariable Processes,” Comp. Chem. Eng., 22 1711-1723 (1998).
Luyben, W.L. “Simple Method for Tuning SISO Controllers in Multivariable Systems,” Ind. Eng. Chem. Process Des. Dev., 25, 654-660 (1986).
Lin, F.Y. and Huang, H.P. “Decoupling Multivariable Control with Two Degrees of Freedom,” Ind. Eng. Chem. Res., 45, 3161-3173 (2006).
Ogunnaike, B.A., and Ray, W.H. “Multivariable Control Design for Linear Systems Having Multiple Time Delay,” AICHE J., 25, 1043-1057 (1979)
Palmor, Z.J., Halevi, Y., and Efrati, T. “A General and Exact Method for Determining Limit Cycles in Decentralized Relay Systems,” Automatica, 31, 1333-1339 (1995).
Palmor, Z.J., Halevi, Y., and Krasney, N. “Automatic Tuning of Decentralized PID Controllers for TITO processes,” Automatica, 31 , 1001-1010 (1995).
Smith, C.A. and Corripio, A.B. Principle and Practice Dynamics and Control, 2nd ed. New York: John Wiley (1997).
Shiu, S. J. and Hwang, S.H. “Sequential Design Method for Multivariable Decoupling and Multiloop PID Controllers,” Ind. Eng. Chem. Res., 37, 107-119 (1998).
Shinskey, F.G. Feedback Controllers for the Process Industries, McGraw-Hill, New York (1994).
Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. Process Dynamics and Control, John Wiley & Sons, Inc. Second Edition (2004).
Tyreus, B.D. Paper presented at the Lehigh University Distillation Control Short Course, Lehigh University, Bethlehem, PA (1982).
Tian, Y.C. and Gao, F. “Double-Controller Scheme for Separating Load Rejection from Set-Point Tracking,” Trans. IChemE., 76, 445-450 (1998).
Vinante, C.D. and Luyben, W.L. “Experimental Studies of Distillation Decoupling ,” Kem. Teollisuus., 29, 499 (1972).
Wood, R.K. and Berry, M.W. “Terminal Composition Control of A Binary Distillation Column,” Chem. Eng. Sci., 28, 1707 (1973).
Witcher, M.F. and McAvoy, T.J. “Interacting Control Systems Steady-State and Dynamic Measurement of Interaction,” ISA Transactions, 16, 35-41 (1977).
Wahlberg, B. “System Identification Using Laguerre Models,” IEEE Trans. Auto. Control, 36, 551-562 (1991).
Wang, Q.G., Biao Zou, Lee, T.H. and Bi, Q. “Auto-Tuning of Multivariable PID Controllers from Decentralized Relay Feedback.” Automatica, 33, 319-330 (1997).
Wittenmark, B. and Salgado, M.E. “Hankel-Norm Based Interaction Measure For Input-Output Paring,” IFAC 15th Triennial World Congress (2002).
Yukitomo, M., Shigemasa, T., Baba, Y., and Kojima, F. “A Two Degree of Freedom PID Control System, its Features and Applications,” Toshiba IT & Control Systems Corporation (2002).
Zhang, W.D. and Sun, Y.X. “Modified Smith Predictor for Controlling Integrator/Time Delay Processes,” Ind. Eng. Chem. Res., 35, 2769-2772 (1996).
Zhang, B. and Zhang, W.D. “Two-Degree-of-Freedom Control Scheme For Process With Large Time Delay”, Asia. Jour. of Control, 8, 50-55 (2006).
Zhang, W.D., Sun, Y.X. and Xu, X.M. “Two Degree-of-Freedom Smith Predictor for Processes with Time Delay,” Automatica, 34, 1279-1282 (1998).
邱正和 “模式預測控制之設計與調諧” 成功大學化學工程研究所碩士論文 (1996).
許倖嘉 “多變數系統之鑑別、分析、與控制” 成功大學化學工程研究所博士論文 (1998).
陳厚岑 “以方塊導向模型為基礎之非線性程序鑑別” 成功大學化學工程研究所博士論文 (2009).
謝楚御 “利用離散Laguerre與Kautz展開式進行非線性程序之鑑別” 成功大學化學工程研究所碩士論文 (2010).