| 研究生: | 林怡君 Lin, Yi-Chun | 
|---|---|
| 論文名稱: | 比較三磷酸腺苷敏感性鉀離子通道在副睪白色脂肪組織中的表達 Compare and contrast the expression of ATP sensitive potassium channels in the epididymal white adipose tissue | 
| 指導教授: | 陳珮君 Chen, Pei-Chun | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 醫學院 - 生理學研究所 Department of Physiology | 
| 論文出版年: | 2022 | 
| 畢業學年度: | 110 | 
| 語文別: | 英文 | 
| 論文頁數: | 38 | 
| 中文關鍵詞: | 副睪白色脂肪 、三磷酸腺苷敏感性鉀離子通道 (KATP通道) 、棕梠酸 、NLRP3發炎小體 、格列苯脲 | 
| 外文關鍵詞: | epididymal white adipose tissue (eWAT), KATP channel, palmitic acid (PA), NLRP3 inflammasome, glibenclamide (GB) | 
| 相關次數: | 點閱:93 下載:6 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
三磷酸腺苷敏感性鉀離子通道(KATP通道)是一種存在於人體不同部位的功能性通道,包括胰臟β細胞、大腦和棕色脂肪組織,它是由四個SURx亞基和四個Kir6.x亞基組成的八聚體複合物,而我們已經知道該通道在棕色脂肪組織中的功能作用。一些研究表明KATP通道在白色脂肪組織的脂質代謝中的存在和重要作用。所以我們使用了西方墨點法、即時聚合酶連鎖反應、免疫組織化學染色法來確認副睪白色脂肪中KATP通道的存在。脂毒性指的是游離脂肪酸的超載,這意味著非脂肪的器官或組織中有不正常的脂質累積,而這將導致脂肪胰島軸中KATP通道的運輸缺陷。脂肪島軸表示白色脂肪和胰島β細胞之間的雙向反饋迴路,在這個迴路中,胰島素刺激白色脂肪增加瘦素的產生和分泌,另一方面,瘦素進一步抑制胰島素釋放。而脂毒性也被認為在肥胖和糖尿病中起作用,這種情況可以通過長期注射給予棕櫚酸引起。棕櫚酸是人類日常飲食和血清中最常見的飽和游離脂肪酸,此外,我們發現給予小鼠棕櫚酸會下調KATP通道的表達並引起副睪白色脂肪中的NLRP3發炎反應。我們還使用了高脂肪飲食來建立肥胖模型,發現高脂肪飲食也會降低KATP通道的表達。KATP通道阻滯劑格列苯脲是第二型糖尿病的二線藥物,可以恢復脂毒性模型和肥胖模型中副睪白色脂肪中KATP通道的表達,減緩NLRP3發炎反應,包括降低NLRP3發炎小體的表達。此外,為了更深入研究副睪白色脂肪,我們使用iDISCO這個技術來看位於副睪白色脂肪中的交感神經支配,而我們觀察到高脂肪飲食和棕櫚酸注射損害了白色脂肪中的交感神經支配,格列苯脲則可以恢復交感神經支配。
ATP-sensitive potassium channel (KATP channel) is a functional channel found in different parts of the human body, including pancreatic β cells, brain, and brown adipose tissue. It is an octameric complex composed of four SURx subunits and four Kir6.x subunits. We have already known the functional role of this channel in brown adipose tissue. And a few researches have suggested the presence and the important role of KATP channel in lipid metabolism in white adipose tissue (WAT). So we use the Western blot, real-time polymerase chain reaction (qPCR), and immunohistochemistry (IHC) to check and confirm the presence of KATP channel in epididymal white adipose tissue (eWAT). Lipotoxicity, the overload of free fatty acid, which means abnormal lipid accumulation in non-adipose tissue, will cause defective trafficking of KATP channels in the adipo-insular axis. Adipo-insular axis indicates the bidirectional feedback loop between WAT and pancreatic β cells. In this loop, insulin increases leptin production and secretion by WAT. And leptin further suppresses insulin release. Lipotoxicity is also believed to have a role in obesity and diabetes. And this condition can be induced by chronic palmitic acid (PA) administration. PA is the most common saturated free fatty acid in the human daily diet and serum. Besides, we find PA treatment will downregulate the expression of KATP channel and trigger the NLRP3 inflammatory response in WAT, as we observed from the Western blot and immunohistochemistry results. We also use HFD to establish the obese model and find that HFD also decreases KATP channel expression. KATP channel blocker glibenclamide (GB) which is also the second-line drug for type 2 diabetes, can recover the KATP channel expression in lipotoxicity and obese models and alleviate the NLRP3 inflammation response, including reducing the expression of NLRP3 inflammasome. Moreover, iDISCO (immunolabeling-enabled three-dimensional imaging of solvent-cleared organs) for the sympathetic innervation in eWAT is employed to provide in-depth mechanistic investigation. We observed that HFD and PA injection impaired sympathetic innervation. And GB recovers the sympathetic innervation.
1.	Aguilar-Bryan, L., Bryan, J., 1999. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20, 101-135.
2.	Ashcroft, F.M., 2005. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115, 2047-2058.
3.	Badoer, E., Kosari, S., Stebbing, M.J., 2015. Resistin, an Adipokine with Non-Generalized Actions on Sympathetic Nerve Activity. Front Physiol 6, 321.
4.	Bartness, T.J., Liu, Y., Shrestha, Y.B., Ryu, V., 2014. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 35, 473-493.
5.	Beltowski, J., 2003. Adiponectin and resistin--new hormones of white adipose tissue. Med Sci Monit 9, RA55-61.
6.	Cao, Y., Wang, H., Zeng, W., 2018. Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging. Protein Cell 9, 527-539.
7.	Caron, A., Lee, S., Elmquist, J.K., Gautron, L., 2018. Leptin and brain-adipose crosstalks. Nat Rev Neurosci 19, 153-165.
8.	Carta, G., Murru, E., Banni, S., Manca, C., 2017. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol 8, 902.
9.	Carta, G., Murru, E., Lisai, S., Sirigu, A., Piras, A., Collu, M., Batetta, B., Gambelli, L., Banni, S., 2015. Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS One 10, e0120424.
10.	Chen, H., Ding, Y., Chen, W., Feng, Y., Shi, G., 2019. Glibenclamide alleviates inflammation in oleic acid model of acute lung injury through NLRP3 inflammasome signaling pathway. Drug Des Devel Ther 13, 1545-1554.
11.	Clement, J.P.t., Kunjilwar, K., Gonzalez, G., Schwanstecher, M., Panten, U., Aguilar-Bryan, L., Bryan, J., 1997. Association and stoichiometry of K(ATP) channel subunits. Neuron 18, 827-838.
12.	Du, R.H., Lu, M., Wang, C., Ding, J.H., Wu, G., Hu, G., 2019. The pore-forming subunit Kir6.1 of the K-ATP channel negatively regulates the NLRP3 inflammasome to control insulin resistance by interacting with NLRP3. Exp Mol Med 51, 1-13.
13.	Gao, M., Ma, Y., Liu, D., 2015. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS One 10, e0119784.
14.	Hattersley, A.T., Ashcroft, F.M., 2005. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54, 2503-2513.
15.	Itami, N., Shirasuna, K., Kuwayama, T., Iwata, H., 2018. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod 98, 644-653.
16.	Joshi-Barve, S., Barve, S.S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M., Hote, P., McClain, C.J., 2007. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 46, 823-830.
17.	Kieffer, T.J., Habener, J.F., 2000. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278, E1-E14.
18.	Korbecki, J., Bajdak-Rusinek, K., 2019. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 68, 915-932.
19.	Kuo, Y.Y., Lin, J.K., Lin, Y.T., Chen, J.C., Kuo, Y.M., Chen, P.S., Wu, S.N., Chen, P.C., 2020. Glibenclamide restores dopaminergic reward circuitry in obese mice through interscauplar brown adipose tissue. Psychoneuroendocrinology 118, 104712.
20.	Lafontan, M., Berlan, M., 1995. Fat cell alpha 2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocr Rev 16, 716-738.
21.	Luo, L., Liu, M., 2016. Adipose tissue in control of metabolism. J Endocrinol 231, R77-R99.
22.	Ma, C., Liu, S., Zhang, S., Xu, T., Yu, X., Gao, Y., Zhai, C., Li, C., Lei, C., Fan, S., Chen, Y., Tian, H., Wang, Q., Cheng, F., Wang, X., 2018. Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review). Int J Mol Med 42, 2979-2990.
23.	Martin, G.M., Chen, P.C., Devaraneni, P., Shyng, S.L., 2013. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 4, 386.
24.	Miki, T., Minami, K., Zhang, L., Morita, M., Gonoi, T., Shiuchi, T., Minokoshi, Y., Renaud, J.M., Seino, S., 2002. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 283, E1178-1184.
25.	Moraes-Vieira, P.M., Saghatelian, A., Kahn, B.B., 2016. GLUT4 Expression in Adipocytes Regulates De Novo Lipogenesis and Levels of a Novel Class of Lipids With Antidiabetic and Anti-inflammatory Effects. Diabetes 65, 1808-1815.
26.	Nessa, A., Rahman, S.A., Hussain, K., 2016. Hyperinsulinemic Hypoglycemia - The Molecular Mechanisms. Front Endocrinol (Lausanne) 7, 29.
27.	Oller do Nascimento, C.M., Ribeiro, E.B., Oyama, L.M., 2009. Metabolism and secretory function of white adipose tissue: effect of dietary fat. An Acad Bras Cienc 81, 453-466.
28.	Pirzada, R.H., Javaid, N., Choi, S., 2020. The Roles of the NLRP3 Inflammasome in Neurodegenerative and Metabolic Diseases and in Relevant Advanced Therapeutic Interventions. Genes (Basel) 11.
29.	Ruan, J.S., Lin, J.K., Kuo, Y.Y., Chen, Y.W., Chen, P.C., 2018. Chronic palmitic acid-induced lipotoxicity correlates with defective trafficking of ATP sensitive potassium channels in pancreatic beta cells. J Nutr Biochem 59, 37-48.
30.	Shi, H., Moustaid-Moussa, N., Wilkison, W.O., Zemel, M.B., 1999. Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J 13, 1833-1838.
31.	Siegrist-Kaiser, C.A., Pauli, V., Juge-Aubry, C.E., Boss, O., Pernin, A., Chin, W.W., Cusin, I., Rohner-Jeanrenaud, F., Burger, A.G., Zapf, J., Meier, C.A., 1997. Direct effects of leptin on brown and white adipose tissue. J Clin Invest 100, 2858-2864.
32.	Sola, D., Rossi, L., Schianca, G.P., Maffioli, P., Bigliocca, M., Mella, R., Corliano, F., Fra, G.P., Bartoli, E., Derosa, G., 2015. Sulfonylureas and their use in clinical practice. Arch Med Sci 11, 840-848.
33.	Wei, Y., Wang, D., Topczewski, F., Pagliassotti, M.J., 2006. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291, E275-281.
34.	Wronska, A., Kmiec, Z., 2012. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 205, 194-208.
35.	Wu, K.K., Cheung, S.W., Cheng, K.K., 2020. NLRP3 Inflammasome Activation in Adipose Tissues and Its Implications on Metabolic Diseases. Int J Mol Sci 21.
36.	Yaron, J.R., Gangaraju, S., Rao, M.Y., Kong, X., Zhang, L., Su, F., Tian, Y., Glenn, H.L., Meldrum, D.R., 2015. K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis 6, e1954.
37.	Zahid, A., Li, B., Kombe, A.J.K., Jin, T., Tao, J., 2019. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol 10, 2538.