| 研究生: |
羅翔文 Lo, Hsiang-Wen |
|---|---|
| 論文名稱: |
以逆向數值方法預測向上之水平雙層平板之三維暫態自然對流熱傳特徵 Prediction of Transient 3D Natural Convection Heat Transfer characteristic in an Upward-Facing Horizontal Double-Plate Using Inverse Numerical Method |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 計算流體力學 、逆向方法 、暫態熱傳問題 、自然對流 |
| 外文關鍵詞: | CFD, Inverse method, Transient heat transfer problem, Natural convection |
| 相關次數: | 點閱:34 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究擬運用三維逆向熱傳方法配合最小平方法進行數值分析,並透過模擬軟體Ansys Fluent 18.0模擬實驗之流場及溫度分布狀況。本研究架設一水平雙層平板,分別為聚丙烯及中碳鋼,藉此模擬燃燒室外殼之設計及觀察熱由中碳鋼傳遞至外界對周圍空氣所產生之影響,並利用CFD模擬軟體進行暫態數值預測物理性質例如熱傳率及熱傳係數隨時間之變化。
由模擬結果可知,在暫態分析的過程中,本研究從剛開始加熱到最後穩態階段流場主要可分為三個階段,分別為層流區、過渡區及紊流區,同時在每個不同區域會有不同適用之流動模型,本研究將透過均方根誤差、流線分布、熱板上之熱傳係數及最大速度進行流動模型判斷,選擇在各階段最適用之流動模型。
In this paper, an upward-facing horizontal double-plate with natural convection is discussed. Predicting unmeasurable physical properties like heat transfer rate (Q) and heat transfer coefficient (h ̅) through experimental data combined with numerical simulations.
According to the result, the flow field can be divided into three different stages from transient to steady state. When Ra<2.02×10^5, the flow field is in the laminar stage. When 2.02×10^5<Ra<1.01×10^7, the flow field is in the transition stage. Lastly, when 1.01×10^7<Ra, the flow field is in the transient stage. In addition, different stages have different suitable flow models. Therefore, it is important to choose the appropriate flow model in numerical simulation.
[1] Seraphim, "Seraphim space index Q4 2024," 2025.
[2] S. B. Paramane, W. Van der Veken, and A. Sharma, "A coupled internal–external flow and conjugate heat transfer simulations and experiments on radiators of a transformer," Applied Thermal Engineering, vol. 103, pp. 961-970, 2016.
[3] N. Holešová, R. Lenhard, K. Kaduchová, and M. Holubčík, "Application of Particle Image Velocimetry and Computational Fluid Dynamics Methods for Analysis of Natural Convection over a Horizontal Heating Source," (in English), Energies, vol. 16, no. 10, p. 4066, 2023 2023.
[4] H. Nemati, M. Moradaghay, M. Moghimi, and J. Meyer, "Natural convection heat transfer over horizontal annular elliptical finned tubes," International Communications in Heat and Mass Transfer, vol. 118, p. 104823, 2020.
[5] T. Defraeye, B. Blocken, and J. Carmeliet, "Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD modelling," Energy Conversion and Management, vol. 52, no. 1, pp. 512-522, 2011.
[6] P. W. Egolf, "Difference-quotient turbulence model: A generalization of Prandtl's mixing-length theory," Physical Review E, vol. 49, no. 2, pp. 1260-1268, 02/01/ 1994.
[7] M. N. Khalaji, A. Koca, and İ. Kotcioğlu, "Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries," International Journal of Innovative Research and Reviews, vol. 3, no. 2, pp. 29-34, 2019.
[8] M. Balogh, A. Parente, and C. Benocci, "RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM," Journal of wind engineering and industrial aerodynamics, vol. 104, pp. 360-368, 2012.
[9] D. Füzesi and V. Józsa, "The importance of unsteady phenomena of ammonia/methane combustion in an experimental swirl burner: Comparison of steady-state and transient simulation results," Combustion and Flame, vol. 260, p. 113207, 2024.
[10] M. Granda, M. Trojan, and D. Taler, "CFD analysis of steam superheater operation in steady and transient state," Energy, vol. 199, p. 117423, 2020.
[11] R. Scharler et al., "Transient CFD simulation of wood log combustion in stoves," Renewable Energy, vol. 145, pp. 651-662, 2020.
[12] 張日信, "以數值及實驗方法探討具有相變化材料之熱沉置於空腔內之逆向自然對流熱傳," 2023.
[13] 何格彰, "矩形鰭片陣列於矩形外殼內之熱傳特性預測," 2010.
[14] Q. Chen and W. Xu, "A zero-equation turbulence model for indoor airflow simulation," Energy and buildings, vol. 28, no. 2, pp. 137-144, 1998.
[15] E. R. Van Driest, "On turbulent flow near a wall," Journal of the aeronautical sciences, vol. 23, no. 11, pp. 1007-1011, 1956.
[16] T. Cebeci, Analysis of turbulent boundary layers. Elsevier, 2012.
[17] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," in Numerical prediction of flow, heat transfer, turbulence and combustion: Elsevier, 1983, pp. 96-116.
[18] S. A. Orszag, "Renormalisation group modelling and turbulence simulations," Near-wall turbulent flows, 1993.
[19] H.-T. Chen, Y.-C. Huang, K.-X. Chen, J.-R. Chang, and W.-M. Yan, "Experimental and numerical study of inverse natural convection-conduction problem in a fully partitioned cavity," Numerical Heat Transfer, Part A: Applications, pp. 1-24, 2023.
[20] H.-T. Chen, M.-H. Hsu, Y.-C. Huang, and K.-H. Chang, "Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin," Numerical Heat Transfer, Part A: Applications, vol. 84, no. 6, pp. 641-658, 2023.
[21] H.-T. Chen, Y.-L. Hsieh, P.-C. Chen, Y.-F. Lin, and K.-C. Liu, "Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data," International Journal of Heat and Mass Transfer, vol. 127, pp. 541-554, 2018.
[22] H.-T. Chen, S.-C. Chang, M.-H. Hsu, and C.-H. You, "Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC," International Journal of Heat and Mass Transfer, vol. 181, p. 121880, 2021.
[23] W. D. Callister Jr and D. G. Rethwisch, Materials science and engineering: an introduction. John wiley & sons, 2020.
[24] 許名勛, "四管於封閉空腔內之三維自然對流的熱傳特性研究," 2021.
[25] V. Arpaci, A. Salamet, S.-H. Kao, and Y. Jaluria, "Introduction to Heat Transfer," Applied Mechanics Reviews, vol. 55, no. 2, pp. B37-B38, 2002.
[26] A. Bejan, Convection heat transfer. John wiley & sons, 2013.
[27] F. Xu and S. C. Saha, "Transition to an unsteady flow induced by a fin on the sidewall of a differentially heated air-filled square cavity and heat transfer," International Journal of Heat and Mass Transfer, vol. 71, pp. 236-244, 2014.
[28] R. J. Goldstein, E. M. Sparrow, and D. Jones, "Natural convection mass transfer adjacent to horizontal plates," International Journal of Heat and Mass Transfer, vol. 16, no. 5, pp. 1025-1035, 1973.