簡易檢索 / 詳目顯示

研究生: 羅翔文
Lo, Hsiang-Wen
論文名稱: 以逆向數值方法預測向上之水平雙層平板之三維暫態自然對流熱傳特徵
Prediction of Transient 3D Natural Convection Heat Transfer characteristic in an Upward-Facing Horizontal Double-Plate Using Inverse Numerical Method
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 計算流體力學逆向方法暫態熱傳問題自然對流
外文關鍵詞: CFD, Inverse method, Transient heat transfer problem, Natural convection
相關次數: 點閱:34下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究擬運用三維逆向熱傳方法配合最小平方法進行數值分析,並透過模擬軟體Ansys Fluent 18.0模擬實驗之流場及溫度分布狀況。本研究架設一水平雙層平板,分別為聚丙烯及中碳鋼,藉此模擬燃燒室外殼之設計及觀察熱由中碳鋼傳遞至外界對周圍空氣所產生之影響,並利用CFD模擬軟體進行暫態數值預測物理性質例如熱傳率及熱傳係數隨時間之變化。
    由模擬結果可知,在暫態分析的過程中,本研究從剛開始加熱到最後穩態階段流場主要可分為三個階段,分別為層流區、過渡區及紊流區,同時在每個不同區域會有不同適用之流動模型,本研究將透過均方根誤差、流線分布、熱板上之熱傳係數及最大速度進行流動模型判斷,選擇在各階段最適用之流動模型。

    In this paper, an upward-facing horizontal double-plate with natural convection is discussed. Predicting unmeasurable physical properties like heat transfer rate (Q) and heat transfer coefficient (h ̅) through experimental data combined with numerical simulations.
    According to the result, the flow field can be divided into three different stages from transient to steady state. When Ra<2.02×10^5, the flow field is in the laminar stage. When 2.02×10^5<Ra<1.01×10^7, the flow field is in the transition stage. Lastly, when 1.01×10^7<Ra, the flow field is in the transient stage. In addition, different stages have different suitable flow models. Therefore, it is important to choose the appropriate flow model in numerical simulation.

    摘要 I Extend Abstract II 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號說明 XV 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的與方法 6 1-4 本文架構 8 第二章 數值模擬與逆向方法 10 2-1 計算流體力學簡介 10 2-2 基本假設 10 2-3 流場數值理論與流動模型 11 2-3-1 層流模型 15 2-3-2 零方程式模型 15 2-3-3 k-ε 模型 16 2-3-3-1 標準k-ε模型 17 2-3-3-2 重整化群組k-ε 模型 18 2-4 輻射模型 20 2-5 逆向方法 21 2-5-1 最小平方法 22 2-5-2 均方根誤差定理 24 第三章 實驗方法 26 3-1 實驗設計 26 3-2 實驗設備 29 3-2-1 實驗材料 29 3-2-2 供電及加熱系統 30 3-2-3 資料擷取系統 30 3-3 實驗參數 31 3-4 實驗流程 32 3-4-1 熱電偶校正 32 3-4-2 實驗架設 33 3-4-3 數據紀錄 33 3-5 溫度量測 34 3-6 實驗量測結果 36 第四章 計算流體力學軟體模擬分析 37 4-1 軟體介紹 37 4-2 三維模型 39 4-3 網格劃分與品質分析 41 4-3-1 網格劃分 41 4-3-2 誤差分析 43 4-3-3 網格獨立性 44 4-3-4 時間步長(time step, ∆t)選擇 45 4-4 邊界條件 48 4-5 初始條件 49 4-6 數值計算方法 49 4-7 模擬軟體設定 51 第五章 結果與討論 53 5-1 流動模型選定 53 5-1-1 穩態流動模型選定 55 5-1-2 暫態流動模型選定 60 5-1-2-1 t = 100s之模擬數據 60 5-1-2-2 t = 200s之模擬數據 64 5-1-2-3 t = 2000s之模擬數據 68 5-1-2-4 t = 10000s之模擬數據 72 5-2 暫態至穩態之各種估計值分析 74 5-2-1 估計值隨時間之變化表 74 5-2-2 最大速度(V_max)隨時間(t)之變化 75 5-2-3 流場隨時間(t)之變化 77 5-2-4 溫度分布隨時間(t)之變化 80 5-2-5 Nu隨Ra及時間(t)之變化 83 5-2-6 熱傳係數(h ̅_h)隨時間(t)之變化 85 第六章 結論與未來展望 86 6-1 結論 86 6-2 未來展望與建議 87 第七章 參考文獻 89

    [1] Seraphim, "Seraphim space index Q4 2024," 2025.
    [2] S. B. Paramane, W. Van der Veken, and A. Sharma, "A coupled internal–external flow and conjugate heat transfer simulations and experiments on radiators of a transformer," Applied Thermal Engineering, vol. 103, pp. 961-970, 2016.
    [3] N. Holešová, R. Lenhard, K. Kaduchová, and M. Holubčík, "Application of Particle Image Velocimetry and Computational Fluid Dynamics Methods for Analysis of Natural Convection over a Horizontal Heating Source," (in English), Energies, vol. 16, no. 10, p. 4066, 2023 2023.
    [4] H. Nemati, M. Moradaghay, M. Moghimi, and J. Meyer, "Natural convection heat transfer over horizontal annular elliptical finned tubes," International Communications in Heat and Mass Transfer, vol. 118, p. 104823, 2020.
    [5] T. Defraeye, B. Blocken, and J. Carmeliet, "Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD modelling," Energy Conversion and Management, vol. 52, no. 1, pp. 512-522, 2011.
    [6] P. W. Egolf, "Difference-quotient turbulence model: A generalization of Prandtl's mixing-length theory," Physical Review E, vol. 49, no. 2, pp. 1260-1268, 02/01/ 1994.
    [7] M. N. Khalaji, A. Koca, and İ. Kotcioğlu, "Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries," International Journal of Innovative Research and Reviews, vol. 3, no. 2, pp. 29-34, 2019.
    [8] M. Balogh, A. Parente, and C. Benocci, "RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM," Journal of wind engineering and industrial aerodynamics, vol. 104, pp. 360-368, 2012.
    [9] D. Füzesi and V. Józsa, "The importance of unsteady phenomena of ammonia/methane combustion in an experimental swirl burner: Comparison of steady-state and transient simulation results," Combustion and Flame, vol. 260, p. 113207, 2024.
    [10] M. Granda, M. Trojan, and D. Taler, "CFD analysis of steam superheater operation in steady and transient state," Energy, vol. 199, p. 117423, 2020.
    [11] R. Scharler et al., "Transient CFD simulation of wood log combustion in stoves," Renewable Energy, vol. 145, pp. 651-662, 2020.
    [12] 張日信, "以數值及實驗方法探討具有相變化材料之熱沉置於空腔內之逆向自然對流熱傳," 2023.
    [13] 何格彰, "矩形鰭片陣列於矩形外殼內之熱傳特性預測," 2010.
    [14] Q. Chen and W. Xu, "A zero-equation turbulence model for indoor airflow simulation," Energy and buildings, vol. 28, no. 2, pp. 137-144, 1998.
    [15] E. R. Van Driest, "On turbulent flow near a wall," Journal of the aeronautical sciences, vol. 23, no. 11, pp. 1007-1011, 1956.
    [16] T. Cebeci, Analysis of turbulent boundary layers. Elsevier, 2012.
    [17] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," in Numerical prediction of flow, heat transfer, turbulence and combustion: Elsevier, 1983, pp. 96-116.
    [18] S. A. Orszag, "Renormalisation group modelling and turbulence simulations," Near-wall turbulent flows, 1993.
    [19] H.-T. Chen, Y.-C. Huang, K.-X. Chen, J.-R. Chang, and W.-M. Yan, "Experimental and numerical study of inverse natural convection-conduction problem in a fully partitioned cavity," Numerical Heat Transfer, Part A: Applications, pp. 1-24, 2023.
    [20] H.-T. Chen, M.-H. Hsu, Y.-C. Huang, and K.-H. Chang, "Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin," Numerical Heat Transfer, Part A: Applications, vol. 84, no. 6, pp. 641-658, 2023.
    [21] H.-T. Chen, Y.-L. Hsieh, P.-C. Chen, Y.-F. Lin, and K.-C. Liu, "Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data," International Journal of Heat and Mass Transfer, vol. 127, pp. 541-554, 2018.
    [22] H.-T. Chen, S.-C. Chang, M.-H. Hsu, and C.-H. You, "Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC," International Journal of Heat and Mass Transfer, vol. 181, p. 121880, 2021.
    [23] W. D. Callister Jr and D. G. Rethwisch, Materials science and engineering: an introduction. John wiley & sons, 2020.
    [24] 許名勛, "四管於封閉空腔內之三維自然對流的熱傳特性研究," 2021.
    [25] V. Arpaci, A. Salamet, S.-H. Kao, and Y. Jaluria, "Introduction to Heat Transfer," Applied Mechanics Reviews, vol. 55, no. 2, pp. B37-B38, 2002.
    [26] A. Bejan, Convection heat transfer. John wiley & sons, 2013.
    [27] F. Xu and S. C. Saha, "Transition to an unsteady flow induced by a fin on the sidewall of a differentially heated air-filled square cavity and heat transfer," International Journal of Heat and Mass Transfer, vol. 71, pp. 236-244, 2014.
    [28] R. J. Goldstein, E. M. Sparrow, and D. Jones, "Natural convection mass transfer adjacent to horizontal plates," International Journal of Heat and Mass Transfer, vol. 16, no. 5, pp. 1025-1035, 1973.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE