| 研究生: |
王耀群 Wang, Yao-Chung |
|---|---|
| 論文名稱: |
利用掃描式探針顯微鏡辨識DNA-蛋白質錯合物立體結構 Imaging and Identification of Spatial Structures on DNA-Protein Complexes Using Scanning Probe Microscopy |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 共同指導教授: |
李展平
Lee, Chan-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 掃描式探針顯微鏡 、原子力顯微鏡 、十字結構 、DNA 、DNA-蛋白質錯合物 |
| 外文關鍵詞: | Scanning Probe Microscope(SPM), Atomic Force Microscope(AFM), cruciform, Tth SSB, RecA, T7 endo I, DNA, DNA-Protein complex |
| 相關次數: | 點閱:114 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DNA是生物體內記錄遺傳訊息的分子,並透過不同功能的蛋白質進行轉錄、修復、重組、複製等反應機制。當DNA要進行特定的生理反應時會和功能性蛋白質鍵結形成特殊的結構,若此蛋白質和DNA分子結合時能夠透過儀器分析其結構與數量,將能夠更完整的了解蛋白質在生物體內的反應機制。
本實驗主要利用掃描式探針顯微鏡(Scanning Probe Microscope,SPM)在次奈米(sub-nanometer)解析度中辨識DNA-蛋白質錯合物結構。並選用單股DNA M13 ss/fMet2WT與雙股DNA M13RF/G72作為蛋白質鍵結的模板和三種蛋白質作用,蛋白質的類型分別為Tth SSB、RecA、T7 endonuclease I,透過SPM檢測觀察在特定條件中的蛋白質-DNA錯合物特殊結構。
根據SPM影像辨識指出:Tth SSB和單股DNA作用能夠形成凝態結構、彎折結構與結點結構,Tth SSB和雙股DNA作用則形成結點結構。RecA和單股DNA作用能形成凝態結構、結點結構,RecA和雙股DNA作用則可形成結點結構。T7 endonuclease I和單股DNA作用可辨識髮夾結構並形成結點結構,T7 endonuclease I和雙股DNA作用可辨識十字結構。
DNA is a molecular record the genetic information in creature. Protein can combine with the DNA at specific structure to process translation、repair、recombination and replication reaction. The DNA-protein complexes conformation can be analyzed by microscopy to verify the different bio-reaction mechanisms.
In this experiment, Identification of spatial structures on DNA-Protein complexes image in sub-nano resolution by Scanning Probe Microscope (SPM). The single strand DNA and double strand DNA are react with Tth SSB、RecA and T7 endonuclease I. According to the SPM images, Tth SSB can formation of node、bending and condensed structures with ssDNA, and it can formation of node structure with dsDNA. RecA can formation of node、bending and condensed structure with ssDNA, and it can formation of node and filament structure with dsDNA. T7 endo I can identify the hair-pin structure on ssDNA and cruciform structure on dsDNA.
[1] G. Binnig, C. F. Quate and Ch. Gerber, Atomic Force Microscope, Physical review letter, 56 (9), P.930-934, 1986
[2] A. R. Burns, Domain Structure in Model Membrane Bilayers Investigated by Simultaneous Atomic Force Microscopy and Fluorescence Imaging, Langmuir, 19, P. 8358-8363, 2003
[3] Fukushima, K., Kawai, S.,Saya, D.,Kawakatsu, Measurement of mechanical properties of three-dimensional nanometric objects by an atomic force microscope incorporated in a scanning electron microscope, Review Of Scientific Instruments, 73(7), P.2647-2650, 2002
[4] T. Ushiki, K. Kawabata, Applied Scanning Probe Methods X:Scanning Probe Microscopy in Biological Research, Springer Berlin Heidelberg, P.285-308, 2008
[5] Z. Reich, R. Kapon, R. Nevo, Y. Pilpel, S. Zmora, Y. Scolnik, Scanning force microscopy in the applied biological sciences, Biotechnology Advances, 19, P.451–485, 2001
[6] D. A. Cisneros, C. Hung, C. M. Franz, D. J. Muller, Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy, Journal of Structural Biology, 154, P.232–245, 2006
[7] Sackmann E, Supported membranes: Scientific and practical applications, Science, 271, P.43–48, 1996
[8] Scanning Probe Microscopy Training Book, Digital Instruments, P.5, 2000
[9] Scanning Probe Microscopy Training Book, Digital Instruments, P.9, 2000
[10] Q. X. Huang, Y. T. Fei, S. Gonda, I. Misumi, O. Sato, T. Keem and T. Kurosawa, The interference effect in an optical beam deflection detection system of a dynamic mode AFM, Meas. Sci. Technol., 17, P.1417–1423, 2003
[11] Bing Shi Li, Bernie D. Sattin, M. Cynthia Goh, Direct and Real-Time Visualization of the Disassembly of a Single RecA-DNA-ATPγS Complex Using AFM Imaging in Fluid, Nano Lett., 6 (7), P.1474-1478, 2006
[12] C.B. Prater, P. G. Maivald K.J. Kjoller, M.G. Heaton, Tapping Mode Imaging Applications and Technology, Vecco technical note, 2004
[13] S. Carnally, K. Barrow, M. R. Alexander, C. J. Hayes, S. Stolnik, Saul J. B. Tendler, P. M. Williams, and C. J. Roberts, Ultra-Resolution Imaging of a Self-Assembling Biomolecular System Using Robust Carbon Nanotube AFM Probes, Langmuir, 23 (7), P. 3906-3911, 2007
[14] C. M. Yam, Z. Xiao, J. Gu, S. Boutet, and C. Cai, Modification of Silicon AFM Cantilever Tips with an Oligo(ethylene glycol) Derivative for Resisting Proteins and Maintaining a Small Tip Size for High-Resolution Imaging, J. Am. Chem. Soc, 125, P.7498-7499. 2003
[15] L. Ding, Y. Li, H. Chu, X. Li, and J. Liu, Creation of Cadmium Sulfide Nanostructures Using AFM Dip-Pen Nanolithography, J. Phys. Chem. B, 109 (47), P. 22337-22340, 2005
[16] Mingdong Dong, Sudhir Husale and Ozgur Sahin, Determination of protein structural flexibility by microsecond force spectroscopy, Nature Nanotechnology, 4, P.514-517, 2009
[17] K. Edinger, T. Gotszalk and I. W. Rangelow, Novel high resolution scanning thermal probe, J. Vac. Sci. Technol. B, 19(6), P.2856-2860, 2001
[18] I-Chen Chen, Li-Han Chen, Xiang-Rong Ye, Chiara Daraio, and Sungho Jin, Extremely sharp carbon nanocone probes for atomic force microscopy imaging, Apply Physics Letter, 88, P.153102, 2006
[19] T. Akiyama, U. Staufer , N.F. de Rooij , L. Howald , L. Scandella T. Akiyama et al. , Lithographically defined polymer tips for quartz tuning fork based scanning force microscopes, Microelectronic Engineering, 58, P. 769 –773, 2001
[20] G. Dahlen, M. Osborn, N. Okulan, W. Foreman, and A. Chand, Tip characterization and surface reconstruction of complex structures with critical dimension atomic force microscopy, J. Vac. Sci. Technol. B, 23(6), P.2297-2303, 2005
[21] G. Dai, H. Wolff, F. Pohlenz, H. U. Danzebrink, and G. Wilkening, Atomic force probe for sidewall scanning of nano- and microstructures, Appl.Phy.Lett., 88, P.171908, 2006
[22] Aeschimann L, Meister A, Akiyama T, Chui BW, Niedermann PH, Aeschimann L, Meister A, Akiyama T, Chui BW, Niedermann PH, Heinzelmann H, de Rooij NF, Staufer U, Vettiger P., Scanning probe arrays for life sciences and nanobiology applications, Microelectronic Engineering, 83(4–9),P.1698–1701, 2006
[23] T. Akiyama et al., Self-sensing and self-actuating probe based on quartz tuning fork combined with microfabricated cantilever for dynamic mode atomic force microscopy, Applied Surface Science, 210, P.18–21, 2003
[24] C. Guo, Y. Song, L. Wang, L. Sun, Y. Sun, C. Peng, Z. Liu, T. Yang, and Z. Li, Atomic Force Microscopic Study of Low Temperature Induced Disassembly of RecA-dsDNA Filaments, J. Phys. Chem. C, 112(33), P.1022-1027, 2008
[25] S. Scheuring, T. Boudier, J. N. Sturgis, From high-resolution AFM topographs to atomic models of supramolecular assemblies, Journal of Structural Biology, 159, P.268–276, 2007
[26] N. Buzhynskyy, R. K. Hite, T. Walz, S. Scheuring, The supramolecular architecture of junctional microdomains in native lens membranes, EMBO reports, 8(1), P.51-55, 2007
[27] Luda S. Shlyakhtenko, Vladimir N. Potaman, Richard R. Sinden and Yuri L. Lyubchenko, Structure and Dynamics of Supercoil-Stabilized DNA Cruciforms, J. Mol. Biol., 280, P.61-72, 1998
[28] Sandra L. ShanerS, John Flory, and Charles M. Radding, The Distribution of Escherichia coli recA Protein Bound to Duplex DNA with Single-stranded Ends, J. Biol. Chem., 262(19), P.9220-9230, 1987
[29] J. Kim, J. Heuser, and M. M. Cox, Enhanced RecA Protein Binding to Z DNA Represents a Kinetic Perturbation of a General Duplex DNA Binding Pathway, J. Biol. Chem., 264(36), P.21848-21856, 1989
[30] Ralph R. Meyer, Phyllis S. Laine, The Single-Stranded DNA-Binding Protein of Escherichia coli, Microbiol Rev., 54(4), P.342–380, 1990
[31] S. Dabrowski, M. Olszewski, R. Piatek, A. Brillowska-Dabrowska, G. Konopa and J. Kur, Identification and characterization of singlestranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus – new arrangement of binding domains, Microbiology, 148, P.3307–3315, 2002
[32] Andrey L. Mikheikin, Alexander Y. Lushnikov, and Yuri L. Lyubchenko, Effect of DNA Supercoiling on the Geometry of Holliday Junctions, Biochemistry, 45, P.12998-13006, 2006
[33] Loı¨c Hamon, David Pastre´ , Pauline Dupaigne, Cyrille Le Breton, Eric Le Cam and Olivier Pie´, High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein—DNA complexes, Nucleic Acids Research, 35(8), e58, 2007
[34] A. G.Murzin, OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences, EMBO J., 12(3), P. 861–867, 1993
[35] Timothy M. Lohman and Leslie B. Overman, Two Binding Modes in Escherichia coli Single Strand Binding Protein-Single Stranded DNA Complexes, The Journal of B iological Chemistry, 260(6), P.3594-3603,1985
[36] Jozef Kur, Marcin Olszewski, Anna Długołęcka and Paweł Filipkowski, Single-stranded DNA-binding proteins (SSBs) — sources and applications in molecular biology, Acta Biochemica Polonica, 52(3), P.569–574, 2005
[37] Sławomir Dazbrowski, Marcin Olszewski, Rafał Piaztek, and Jozef Kur, Novel thermostable ssDNA-binding proteins from Thermus thermophilus and T. aquaticus - expression and purification, Protein Expr. Purif., 26(1), P.131138, 2002
[38] Celia Perales, Felipe Cava, Wilfried J. J. Meijer and Jose Berenguer, Enhancement of DNA, cDNA synthesis and fidelity at high temperatures by a dimeric single-stranded DNA-binding protein, Nucleic Acids Research, 31(22), P.6473-6480, 2003
[39] Bernie D. Sattin and M. Cynthia Goh, Direct Observation of the Assembly of RecA/DNA Complexes by Atomic Force Microscopy, Biophysical Journal, 87, P.3430-3436, 2004
[40] K.Muniyappal, Kenneth Williams, John W.Chase and Charles M.Radding, Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure, Nucleic Acids Research, 18(13), P.3967-3973, 1990
[41] B. Franklin Pugh and Michael M. Cox, Stable Binding of recA Protein to Duplex DNA, J. Biol. Chem., 262, P.1326-1336, 1987
[42] Martin Hegner, Steven B. Smith, And Carlos Bustamante, Polymerization and mechanical properties of single RecA–DNA filaments, Proc. Natl. Acad. Sci. USA, 96, P.10109-10114, 1999
[43] Lilley DMJ, White MF, The junction-resolving enzymes, Nat. Rev. Mol. Cell Biol., 2, P.433-443, 2001
[44] Biertu¨ mpfel C, Yang W, Suck D, Crystal structure of T4 endonuclease VII resolving a Holliday junction, Nature, 449, P.616-620, 2007
[45] Rafferty JB, Bolt EL, Muranova TA, Sedelnikova SE, Leonard P, Pasquo A, Baker PJ, Rice DW, Sharples GJ, Lloyd RG, The structure of Escherichia coli RusA endonuclease reveals a new Holliday junction DNA binding fold, Structure, 11, P.1557-1567, 2003
[46] Raaijmakers H, Vix O, Toro I, Golz S, Kemper B, Suck D, X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture, EMBO J,18, P.1447-1458, 1999
[47] McGregor N, Ayora S, Sedelnikova S, Carrasco B, Alonso JC, Thaw P, Rafferty J, The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage, Structure, 13, P.1341-1351, 2005
[48] Hadden JM, De´ clais A-C, Phillips SEV, Lilley DMJ, Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I, EMBO J, 21, P.3505-3515. 2002
[49] Anne-Ce´ cile De´ clais, David MJ Lilley, New insight into the recognition of branched DNA structure by junction-resolving enzymes, Current Opinion in Structural Biology, 18, P.86–95, 2008
[50] De´ clais A-C, Hadden JM, Phillips SEV, Lilley DMJ, The active site of the junction-resolving enzyme T7 endonuclease I, J Mol. Biol., 307, P.1145-1158, 2001
[51] M. L. Sushko, A. L. Shluger, C. Rivetti, Simple Model for DNA Adsorption onto a Mica Surface in 1:1 and 2:1 Electrolyte Solutions, Langmuir, 22, P.7678-7688 , 2006
[52] Sitong Sheng, Yan Gao, Alexander S. Khromov, Avril V. Somlyo, Andrew P. Somlyo, Zhifeng Shao, Cryo-atomic Force Microscopy of Unphosphorylated and Thiophosphorylated Single Smooth Muscle Myosin Molecules, J. Biol. Chem., 278(41), 39892-39896, 2003
[53] Neal Crampton, William A. Bonass, Jennifer Kirkham, Neil H. Thomson, Formation of Aminosilane-Functionalized Mica for Atomic Force Microscopy Imaging of DNA, Langmuir, 21, P.7884-7891, 2005
[54] Hauke Clausen-Schaumann, and Hermann E. Gaub, DNA Adsorption to Laterally Structured Charged Lipid Membranes, Langmuir,15, P.8246-8251, 1999
[55] A.V. Bolshakova, O.I. Kiselyova, A.S. Filonov, O.Yu. Frolova, Y.L. Lyubchenko, I.V. Yaminsky, Comparative studies of bacteria with an atomic force microscopy operating in different modes, Ultramicroscopy, 86, P.121-128, 2001
[56] David Pastre´, Loı¨c Hamon, Fabrice Landousy, Isabelle Sorel, Marie-Odile David, Alain Zozime, Eric Le Cam, Olivier Pie´trement, Anionic Polyelectrolyte Adsorption on Mica Mediated by Multivalent Cations: A Solution to DNA Imaging by Atomic Force Microscopy under High Ionic Strengths, Langmuir, 19, P.2536-2539, 2003
[57] Masato Tanigawa, Takao Okada, Atomic force microscopy of supercoiled DNA structure on mica, Analytica Chimica Acta, 365, P.19-25, 1998
[58]David Pastr, Loc Hamon, Fabrice Landousy, Isabelle Sorel, Marie-Odile David, Alain Zozime, Eric Le Cam, Olivier Pitrement, Anionic Polyelectrolyte Adsorption on Mica Mediated by Multivalent Cations: A Solution to DNA Imaging by Atomic Force Microscopy under High Ionic Strengths, Langmuir, 22 (15), P.6651-6660, 2006
[59] T. Thundat, R. J. Warmack, D. P. Allison, L. A. Bottomley, A. J. Lourenco, and T. L. Ferrel, Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: The effect of humidity on apparent width and image contrast, J. Vac. Sci. Technol. A , 10(4), P.630-635, 1992
[60] David P. Allison, Peggy S. Kerper, Mitchel J. Doktycz, Thomas Thundat, Paul Modrich, Frank W. Larimer, Dabney K. Johnson, Peter R. Hoyt, Michael L. Mucenski, Robert J. Warmack, Mapping Individual Cosmid DNAs by Direct AFM Imaging, Genomics, 41, P.379–384, 1997
[61] Julia Fuchs, Daniela Dell’Atti, Arnaud Buhot, Roberto Calemczuk, Marco Mascini, Thierry Livache, Effects of formamide on the thermal stability of DNA duplexes on biochips, Analytical Biochemistry, 397, P.132–134, 2010
[62] Tanya Stuchinskaya, Lesley A. Mitchenall, Allyn J. Schoeffler, Kevin D. Corbett, James M. Berger, Andrew D. Bates, Anthony Maxwell , How Do Type II Topoisomerases Use ATP Hydrolysis to Simplify DNA Topology beyond Equilibrium? Investigating the Relaxation Reaction of Nonsupercoiling Type II Topoisomerases, J. Mol. Biol., 385, P.1397–1408, 2009
[63] Juliane K Strauss, Thazha P Prakash, Christopher Roberts, Christopher Switzer, L James Maher, DNA bending by a phantom protein, Chemistry and Biology, 3(8), P.671-678, 1996
[64] L James Maher, Mechanisms of DNA bending, Current Opinion in Chemical Biology, 2, P.688-694, 1998
[65] Jozef Kur, Marcin Olszewski, Anna Długołęcka, Paweł Filipkowski, Single-stranded DNA-binding proteins (SSBs) - sources and applications in molecular biology, Acta Biochemica Polonic, 52(3), P.569–574, 2005
[66] S. E. Finkel, R. C. Johnson, MicroReview The Fis protein: it's not just for DNA inversion anymore, Molecular Microbiology, 6(22), P.3257-3265, 1992
[67] W. Cohn and K. Moldave, Progress in Nucleic Acid Research and Molecular Biology, The Journal of Steroid Biochemistry and Molecular Biology, 39(5), P.781, 1991
[68] Helen G. Hansma, Daniel E. Laney, Magdalena Bezanilla, Robert L. Sinsheimer, Paul K. Hansma, Applications for Atomic Force Microscopy of DNA, Biophysical Journal, 68, P.1672-1677, 1995
[69] Roxana Golan, Lı´a I. Pietrasanta, Wan Hsieh, and Helen G. Hansma, DNA Toroids: Stages in Condensation, Biochemistry , 38, P.14069-14076, 1999
[70] I.R. Cooke, D.R.M. Williams, Condensed states ofa semiflexible homopolymer : ordered globules and toroids, Physica A, 339, P.45 – 52, 2004
[71] David D. Dunlap, Alessia Maggi, Marco R. Soria, Lucia Monaco, Nanoscopic structure of DNA condensed for gene Delivery, Nucleic Acids Research, 25(15), P.3095–3101, 1997
[72] G. Eric Plum, Patricia C. Arscott , Victor A. Bloomfieldt, Condensation of DNA by Trivalent Cations:Effects of Cation Structure, Biopolymers, 30, P.631-643, 1990
[73] M. Molas, R. Bartrons, J.C. Perales, Single-stranded DNA condensed with poly-L-lysine results in nanometric particles that are significantly smaller, more stable in physiological ionic strength fluids and afford higher efficiency of gene delivery than their double-stranded counterparts, Biochimica et Biophysica Actam, 1572, P.37– 44, 2002
[74] Victor A. Bloomfield, Condensation of DNA by Multivalent Cations: Considerations on Mechanism, Biopolymers, 31, P.1471-1481, 1991