簡易檢索 / 詳目顯示

研究生: 黃仕憲
Huang, Shih-Shien
論文名稱: 利用TSP-1核糖核酸干擾素增加neu DNA 疫苗療效
Augmentation of neu DNA Vaccine Therapeutic Effect with TSP-1 (Thrombospondin-1) siRNA
指導教授: 賴明德
Lai, Ming-Derg
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 基因槍DNA 疫苗
外文關鍵詞: DNA vaccine, TSP-1, neu, siRNA
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    Her-2/neu這個致癌基因在將近20%的乳癌病人中有放大以及過量表現的現象。也因為Her-2/neu在腫瘤上的專一性表現,因此Her-2/neu就被認為是值得用來做為免疫治療的標的物之一。在我們先前的研究中證實,我們成功地利用異種DNA疫苗結合不同的細胞激素來抵禦內生性表現neu的腫瘤細胞。到目前為止,我們仍在嘗試發展更強而有力的佐劑來增加neu DNA疫苗的免疫療效。
    TSP-1(thrombospondin-1)是由五個胞外的結構域所組成的家族成員,並且參與了細胞與細胞之間和細胞與基質間的溝通。但也有報導指出,TSP-1在人類的樹突狀細胞(dendritic cells)是一個會自我調控的負調節因子,並且會去活化潛在的TGF-β。因為TSP-1在免疫功能上不尋常的角色,我們把TSP-1 siRNA與人類的N端neu接在一起,先利用西方墨漬法以及免疫細胞染色確定其neu有正常的表現以及TSP-1 siRNA的確有壓抑TSP-1的功效。我們也證明利用基因槍的確可以遞送TSP-1 siRNA到淋巴細胞中並且抑制TSP-1的表現。把這樣的一個DNA質體當作DNA疫苗去治療,我們發現的確可以增加免疫療效。我們的結果提供了一個新式的策略去增加neu DNA疫苗的療效。我們也分析打過疫苗的老鼠組別裡,脾臟細胞中細胞激素的變化,發現專一性表現在Treg (T regulatory cells)中一個重要的轉錄因子-foxp3,有明顯的下降。而且我們也發現在結合TSP-1 siRNA後,比較起單獨施打neu的組別,促使CD4+ T cells走向Th1細胞免疫(cellular immunity)的細胞激素IFN-γ也有所上升。為了更加屏除U6 promoter所帶來的免疫影響,我們亦利用TSP-1 scramble siRNA當作控制組別去更專一性地証實這個假說。結果也發現scramble siRNA可以reverse TSP-1 siRNA所造成的免疫現象。本篇研究證明了利用基因槍去破壞樹突狀細胞的TSP-1 的確可以增加DNA疫苗的療效。這讓我們提出結合TSP-1siRNA會增加免疫療效的原因是因為其降低了Treg以及增加Th1細胞的表現。

    ABSTRACT
    The HER-2/neu oncogene is amplified and overexpressed in 20% of primary human breast cancer and due to the tumor specificity of its overexpression. The HER-2/neu oncoprotein is considered one of the most attractive targets for immunotherapeutic intervention. In our previously study, we successfully used xenogeneic DNA vaccine combining variety cytokines against mouse tumor cells overexpressing endogenous p185neu. Until now, we still try to discover the more powerful adjuvant to enhance the therapeutic efficacy of neu DNA vaccine. Thrombospondin-1 (TSP-1) consist of a family of 5 extracellular domains that participate in cell-to-cell and cell-to-matrix communication and it was reported to be an autocrine negative regulator of human DCs and to activate in vivo latent TGF-β. Base on its unusual role in immune response, we constructed the plasmid expressing TSP-1 siRNA and human-cyto-N’-neu, then check the neu expression level and knockdown effect of TSP-1 siRNA by immunohistochemistry and western blotting. The results suggested that vaccinated mice with TSP-1 siRNA by gene gun could inhibit the TSP-1 expression in draining lymph node. We found that the human-cyto-N’-neu-TSP-1 siRNA has better therapeutic effect. Our results provide novel strategies to enhance neu DNA vaccine therapeutic efficacy. We also found that Treg specific marker, foxp3, decreased in splenocytes of human-cyto-N’-neu-TSP-1 siRNA vaccination group. The expression of CD4+ subset Th1 cytokine-interferon-γ, increased in the groups of mice combing with TSP-1 siRNA. In order to eliminate the immune response induced by U6 promoter, we fused human-cyto-N’-neu with TSP-1 scramble siRNA as a control group to confirm the hypothesis accurately. We proved that the TSP-1 scramble siRNA reversed therapeutic efficacy and immune response compared with TSP-1 siRNA. In this thesis, we found that the therapeutic efficacy was improved by delivering TSP-1 siRNA into dendritic cells with gene gun. The mechanism of immune response induced by human-cyto-N’-neu-TSP-1 siRNA may due to down-regulate of Tregs and up-regulate of Th1.

    目錄 縮寫檢索表 1 緒論 一、致癌基因ErbB-2(Her-2/neu)與惡性腫瘤相關性 2 二、目前以ErbB-2(Her-2/neu)為標的抗原的免疫治療方式 2 三、使用DNA疫苗的優勢與限制 4 四、TSP-1的結構、功能,及其在免疫學上扮演的角色 5 五、實驗目的與策略 8 材料與方法 一、細胞培養 10 二、質體製備 15 三、構築質體之表現 25 四、動物實驗 33 五、治療效果評估方式 34 結果 一、TSP-1 siRNA質體的構築以及其表現 39 二、human-cyto-N’-neu和human-cyto-N’-neu-TSP-1 siRNA質體DNA的構築以及其表現 39 三、觀察利用基因槍遞送siRNA的能力 40 四、human-cyto-N’-neu以及human-cyto-N’-neu-TSP-1 siRNA DNA疫苗對於腫瘤治療效果評估 41 五、探討免疫TSP-1 siRNA增加neu DNA疫苗療效的機制 42 六、利用TSP-1 scramble siRNA證明TSP-1 siRNA的療效 42 七、RT-PCR偵測結合TSP-1 scramble siRNA的細胞激素 43 八、偵測活體細胞中CD25+/CD4+CD25+ T cells以及foxp3/CD4+ T cells表現量 43 九、偵測活體細胞中IFN-γ/CD4+ T cells表現量 44 討論 45 結論 53 參考文獻 54 附圖 66 附錄 82 自述 92 圖目錄 Fig.1 TSP-1 siRNA壓制TSP-1蛋白的表現 67 Fig.2確認質體DNA的表現 69 Fig.3利用新式基因槍將TSP-1 siRNA打入老鼠皮下細胞 71 Fig.4 TSP-1 siRNA增加neu DNA疫苗的療效 73 Fig.5 接受過治療後老鼠脾臟細胞中TGF-β以及foxp3有明顯的下降 74 Fig.6 構築human-cyto-N’-neu-TSP-1 scramble siRNA 76 Fig.7 結合TSP-1 scramble siRNA並不能產生較佳的免疫療效 77 Fig.8結合TSP-1 scramble siRNA引起的免疫反應與human-cyto-N’-neu 相同 78 Fig.9 偵測打過疫苗的老鼠中,CD25+/CD4+CD25+ T cells以及foxp3/CD4+ T cells的表現量變化 80 Fig.10 偵測打過疫苗的老鼠中,IFN-γ/CD4+T cells的表現量變化 81

    參考文獻
    Alegre, M.L., Noel, P.J., Eisfelder, B.J., Chuang, E., Clark, M.R., Reiner, S.L., and Thompson, C.B. (1996). Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J.Immunol. 157, 4762-4770.

    Cederbom, L., Hall, H., and Ivars, F. (2000). CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538-1543.

    Chen, Y., Hu, D., Eling, D.J., Robbins, J., and Kipps, T.J. (1998). DNA vaccines encoding full-length or truncated neu induce protective immunity against neu-expressing mammary tumors. Cancer. Res. 58, 1965-1998.

    Chen, S.A., Tsai, M.H., Wu, F.T., Hsiang, A., Chen, Y.L., Lei, H.Y., Tzai, T.S., Leung, H.W., Jin, Y.T., Hsieh, C.L., Hwang, L.H., and Lai, M.D. (2000). Induction of antitumor immunity with combination of HER2/neu DNA vaccine and interleukin 2 gene-modified tumor vaccine. Clin. Cancer. Res. 6, 4381-4388.

    Christianson, T.A., Doherty, J.K., Lin, Y.J., Ramsey, E.E., Holmes, R., Keenan, E.J., and Clinton, G.M. (1998). NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer. Res. 58, 5123-5129.

    Corr, M., Lee, D.J., Carson, D.A., and Tighe, H. (1996). Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med. 184, 1555-1560.

    Crawford, S.E., Stellmach, V., Murphy-Ullrich, J.E , Ribeiro, S.M., Lawler, J., Hynes, R.O., Boivin, G.P., and Bouck, N. (1998). Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 93, 1159-1170.

    Disis, M.L., Pupa, S.M., Gralow, J.R., Dittadi, R., Menard, S., and Cheever, M.A. (1997). High-titer Her-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J. Clin. Oncol. 15, 3363-3367.

    Donnelly, J.J., Ulmer, J.B., Shiver, J.W., and Margaret, A.L. (1997). DNA Vaccines. Annu. Rev. Immunol. 15, 617-648.

    Ewer, M.S., Gibbs, H.R., Swafford, J., and Benjamin, R.S. (1999) Cardiotoxicity in patients receiving Trastuzumab (Herceptin): primary toxicity, synergistic or sequential stress, or surveillance artifact? Semin. Oncol. 26, 96-101.

    Feldman, J.D. (1972). Immunological enhancement: a study of blocking antibodies. Adv. Immunol. 15, 167-214.

    Fendly, B.M., Kotts, C., Vetterlein, D., Lewis, G.D., Winget, M., Carver, M.E., Watson, S.R., Sarup, J., Saks, S., and Ullrich, A. (1990). The extracellular domain of HER2/neu is a potential immunogen for active specific immunotherapy of breast cancer. J. Biol. Response. Mod. 9, 449-55.

    Garza, K.M., Chan, S.M., Suri, R., Nguyen, L.T., Odermatt, B., Schoenberger, S.P., and Ohashi, P.S. (2000). Role of antigen-presenting cells in mediating tolerance and autoimmunity. J. Exp. Med. 191, 2021-2027.

    Godfrey, V.L., Wilkinson, J.E., Rinchik, E.M., and Russell, L.B. (1991) Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc. Natl. Acad. Sci. USA. 88, 5528-5532.

    Grant, E.P., Michalek, M.T., Goldberg, A.L., and Rock, K.L. (1995). Rate of antigen degradation by the ubiquitin-proteasome pathway influences MHC class I presentation. J. Immunol. 155, 3750-3758.

    Hurwitz, E., Stancovski, I., Sela, M., and Yarden, Y. (1995). Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc. Natl. Acad. Sci. USA. 92, 3353-3357.

    Jiang, H., and Chess, L. (2004). An integrated view of suppressor T cell subsets in immunoregulation. J. Clin. Invest. 114, 1198-1208.

    Johansson, U., Higginbottom, K., and Londei, M. (2004). CD47 ligation induces a rapid caspase-independent apoptosis-like cell death in human monocytes and dendritic cells. Scand. J. Immunol. 59, 40-49.

    Kang, J.H., Kim, S.A., Chang, S.Y., Hong, S., and Hong, K.J. (2007). Inhibition of trichostatin A-induced antiangiogenesis by small-interfering RNA for thrombospondin-1. Exp. Mol. Med. 39, 402-411.

    Khattri, R., Cox, T., Yasayko, S.A., and Ramsdell, F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337-42.

    Khattri, R., Kasprowicz, D., Cox, T., Mortrud, M., Appleby, M.W., Brunkow, M.E., Ziegler, S.F., and Ramsdell, F. (2001). The amount of scurfin protein determines peripheral T cell number and responsiveness. J. Immunol. 167, 6312-6320.

    Kim, T.W., Lee, J.H., He, L., Boyd, D.A., Hardwick, J.M., Hung, C.F., and Wu, T.C. (2005). Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer. Res. 65, 309-316.

    Krummel, M.F., and Allison, J.P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459-465.

    Leyland-Jones,B., Gelmon, K., Ayoub, J.P., Arnold, A., Verma, S., Dias, R., and Ghahramani, P. (2003). Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J. Clin. Oncol. 21, 3900-3901.

    Li, Z., He, L., Wilson, K., and Roberts, D. (2001). Thrombospondin-1 inhibits TCR-mediated T lymphocyte early activation. J. Immunol. 166, 2427-2436.

    Lofts, F.J., and Gullick, W.J. (1992). c-erbB2 amplification and overexpression in human tumors. Cancer. Treat. Res. 61, 161-179.

    Marteau, F., Gonzalez, N.S., Communi, D., Goldman, M., Boeynaems, J.M., and Communi, D. (2005). Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood. 106, 3860-3866.

    Mahnke, K., Guo, M., Lee, S., Sepulveda, H., Swain, S.L., Nussenzweig, M., Steinman, R.M. (2000). The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell. Biol. 151, 673-684.

    Mahnke, K., Qian, Y., Knop, J., and Enk, A.H. (2003). Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood. 101, 4862-4869.
    Mohrbacher, A.F., Gregory, S.A., Gabriel, D.A., Rusk, J.M., and Giles, F.J. Liposomal daunorubicin (DaunoXome) plus dexamethasone for patients with multiple myeloma. A phase II International Oncology Study Group study. Cancer. 94, 2645-2652.

    Nishimura, T., Iwakabe, K., Sekimoto, M., Ohmi, Y., Yahata, T., Nakui, M., Sato, T., Habu, S., Tashiro, H., Sato, M., and Ohta, A. (1999). Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J. Exp. Med. 190, 617-627.

    Pegram, M., and Slamon, D. (2001). Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Oncol. 27, 13-19 .

    Peoples, G.E., Goedegebuure, P.S., Smith, R., Linehan, D.C., Yoshino, I., Eberlein, T.J. (1995). Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same Her-2/neu-derived peptide. Proc. Natl. Acad. Sci. USA. 92, 432-436.

    Piccirillo, C.A., and Thornton, A.M. (2004). Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends. Immunol. 25, 374-380.

    Piechocki, M.P., Pilon, S.A., and Wei, W.Z. (2001). Antitumor Immunity Induced by Plasmid DNA Encoding Secreted and Cytoplasmic Human ErbB-2. J. Immunol. 167, 3367-3374.

    Piechocki, M.P., Pilon, S.A., and Wei, W.Z. (2002). Quantitative measurement of anti-ErbB-2 antibody by flow cytometry and ELISA. J. Immunol. Methods. 259, 33-42.

    Pilon, S.A., Piechocki, M.P., and Wei, W.Z. (2001). Vaccination with cytoplasmic ErbB-2 DNA protects mice from mammary tumor growth without anti-ErbB-2 antibody. J. Immunol. 167, 3201-3206.

    Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X., and Blankenstein, T. (1998). B cells inhibit induction of T cell-dependent tumor immunity. Nat. Med. 4, 627-630.

    Read, S., Malmstrom, V., and Powrie, F. (2000). Cytotoxic T lymphocyte-associated antigen 4 plays anessential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295-302.

    Ren, B., Yee, K.O., Lawler, J., and Khosravi-Far, R. (2006). Regulation of tumor angiogenesis by thrombospondin-1. Biochim. Biophys. Acta. 1765, 178-188.

    Renard, V., Sonderbye L., Ebbehøj, K., Rasmussen, P.B., Gregorius, K., Gottschalk, T., Mouritsen, S., Gautam, A., and Leach, D.R. (2003). HER-2 DNA and protein vaccines containing potent Th cell epitopes induce distinct protective and therapeutic antitumor responses in HER-2 transgenic mice. J. Immunol. 171, 1588-1595.

    Rinaldi, M., Ria, F., Parrella, P., Signori, E., Serra, A., Ciafre, S.A., Vespignani, I., Lazzari, M., Farace, M.G., Saglio, G., and Fazio, V.M. (2001). Antibodies elicited by naked DNA vaccination against the complementary-determining region 3 hypervariable region of immunoglobulin heavy chain idiotypic determinants of B-lymphoproliferative disorders specifically react with patients' tumor cells. Cancer. Res. 61, 555-562.

    Rovero, S., Amici, A., Carlo, E.D., Bei, R., Nanni, P., Quaglino, E., Porcedda, P., Boggio, K., Smorlesi, A., Lollini, P.L., Landuzzi, L., Colombo, M.P., Giovarelli, M., Musiani P., and Forni, G. (2000). DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice J. Immunol. 165, 5133-5142.

    Rush, C., Mitchell, T., and Garside, P. (2002). Efficient priming of CD4+ and CD8+ T cells by DNA vaccination depends on appropriate targeting of sufficient levels of immunologically relevant antigen to appropriate processing pathways. J. Immunol. 167, 3367-3374
    Sakaguchi, S. (2004). Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531-562.
    Seddon, B., and Mason, D. (1999). Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J. Exp. Med. 189, 877-882.
    Seidman, A., Hudis, C., Pierri, M.K., Shak, S., Paton, V., Ashby, M., Murphy, M., Stewart, S.J., and Keefe, D. (2002). Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol. 20, 1215-1221.
    Shevach, E.M. (2002). CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389-400.
    Sliwkowski, M.X., Lofgren, J.A., Lewis, G.D., Hotaling, T.E., Fendly, B.M., and Fox, J.A. (1999). Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60-70.
    Steitz, J., Bruck, J., Lenz, J., Knop, J., and Tuting, T. (2001). Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer. Res. 61, 8643-8646.
    Suri-Payer, E., Amar, A.Z., Thornton, A.M., Shevach, E.M. (1998). CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212-1218.
    Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J., and Sakaguchi, S. (1998). Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969-1980.

    Thornton, A.M., and Shevach, E.M. (2000). Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183-190.

    Tighe, H., Corr, M., Roman, M., and Raz, E. (1998). Gene vaccination: plasmid DNA is more than just a blueprint. Immunol. Today. 19, 89-97.

    Toellner, K.M., Luther, S.A., Sze, D.M., Choy, R.K., Taylor, D.R., MacLennan, I.C., and Acha-Orbea, H. (1998). T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J. Exp. Med. 187, 1193-1204.

    Tokuda, Y., Ohta, M., Suzuki, Y., Kubota, M., and Tajima, T. (2001). Clinical development of trastuzumab in breast cancer. Breast. Cancer. 8, 93-97.

    Walker, R.A., Gullick, W.J., and Varley, J.M. (1989). An evaluation of immunoreactivity for c-erbB-2 protein as a marker of poor short-term prognosis in breast cancer. Br. J. Cancer. 60, 426-429.

    Weiss, R., Scheiblhofer, S., Freund, J., Ferreira, F., Livey, I., and Thalhamer, J. (2002), Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine. 20, 3148-3154.

    Wright, C., Angus, B., Nicholson, S., Sainsbury, J.R., Cairns, J., Gullick, W.J., Kelly, P., Harris, A.L., and Horne, C.H. (1989). Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer. Res. 49, 2087-2090.

    Zhang, X., Izikson, L., Liu, L., and Weiner, H.L. (2001). Activation of CD25+CD4+ Regulatory T Cells by Oral Antigen Administration. J. Immunol. 167, 4245 -4253.

    Xu, D., Fu, J., Jin, L., Zhang, H., Zhou, C., Zou, Z., Zhao, J.M., Zhang, B., Shi, M., Ding, X., Tang, Z., Fu, Y.X., and Wang, F.S. (2006). Circulating and Liver Resident CD4+CD25+ Regulatory T Cells Actively Influence the Antiviral Immune Response and Disease Progression in Patients with Hepatitis B. J. Immunol. 177, 739-747.

    Yu, D., and Hung, M.C. (2001). Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene. 19, 6115-6121.

    Yu, D.H., Scorsone, K., and Hung, M.C. (1991). Adenovirus type 5 E1A gene products act as transformation suppressors of the neu oncogene. Mol. Cell. Biol. 11, 1745-1750.

    下載圖示 校內:2012-07-26公開
    校外:2012-07-26公開
    QR CODE