| 研究生: |
塗宗翰 Tu, Tzung-Han |
|---|---|
| 論文名稱: |
CSMA/CA-RBTv : 適用於M2M網路環境之強化碰撞避免的CSMA/CA媒體存取協定 CSMA/CA-RBTv : An Enhanced Collision Avoidance CSMA/CA-based Media Access Protocol over the M2M Communication Environment |
| 指導教授: |
黃崇明
Huang, Chung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 機器對機器 (Machine-to-Machine, M2M) 、載波偵聽多路存取/碰撞避免 (Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA) 、IEEE 802.11 |
| 外文關鍵詞: | Machine-to-Machine (M2M), CSMA/CA, IEEE 802.11 |
| 相關次數: | 點閱:122 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Machine-to-Machine (M2M)通訊是一種對於機器之間可以進行獨立溝通的方式,能夠促使有線以及無線的通訊不須藉由人為的干涉,然而,當網路裝置的數量增加的時候,碰撞發生的情況也會增加,導致降低了媒體存取控制層(MAC layer protocol)的效能以及增加了能源消耗,為了要解決這個問題,本研究提出了強化的IEEE 802.11 CSMA/CA的媒體存取控制的方法,稱為CSMA/CA-RBTv,其中RBT代表Registered Backoff Time以及v代表的是vector。在本研究提出的CSMA/CA-RBTv中,當一個mobile node傳送data packet給AP時,會在data packet中附帶一個隨機的數值稱為RBT,用途為表明此mobile node接下來將要傳送其下一個data packet的時間,一旦AP收到packet,會從中取出RBT並將其存入Registered-Time-Slot-List (RTSL)作為排程的依據,在AP回傳ACK給mobile node之前,AP會進行(1)從RTSL中選擇擁有最小RBT的mobile node當作下一個將會存取網路的候選者,以及(2)使用RTSL製作bit vector來紀錄哪些time slots已經被註冊或預訂給data傳輸使用,最後AP將前面所提之兩種頻道存取資訊附加到ACK packet之中,因為ACK packet是用broadcast的方式傳送,所有在關注傳輸情形的mobile node皆會得知哪一個mobile node在接下來有存取權,以及會在哪一段time slots進行存取,總而言之,這樣可以減少碰撞發生的次數,進而減少一些能源消耗。模擬結果顯示本研究提出的CSMA/CA-RBTv在M2M網路環境中當mobile node的數量增加時,在傳輸效能以及能源效率擁有顯著的提升。
Machine-to-Machine (M2M) communication is a machine-independent communication paradigm that can facilitate wired and wireless communications without the need for human intervention. However, as the number of network devices increases, the occurrence of collisions rises, which results in the efficiency of the MAC layer protocol being degraded and the power consumption being increased. To resolve this problem, this thesis proposes an enhanced IEEE 802.11 CSMA/CA media access scheme designated as CSMA/CA-RBTv, in which RBT denotes the Registered Backoff Time and v denotes vector. In the proposed CSMA/CA-RBTv, when a mobile node transmits data to the AP, it attaches a random number called the RBT, which denotes the next time slot the mobile node would like to transmit its next data packet, to the packet. Once the AP receives the packet, it extracts the RBT and adds it to a Registered-Time-Slot-List (RTSL) used to conduct channel access scheduling. Before transmitting the ACK packet to the mobile node, the AP (1) selects the node with the smallest RBT from the RTSL list as the next one to access the wireless channel and (2) uses RTSL to make a bit vector marking which time slots have been registered/reserved for data transmission, i.e., channel access. Finally, the AP appends the aforementioned two pieces of channel access information to the ACK packet. Since the ACK packet is transmitted in a broadcast manner, all of the mobile nodes which overhear the transmission know which node has the next right to access the channel and which time slots are still available for channel access. Consequently, the occurrence of collisions can be reduced, which also results in decreasing power consuming. The simulation results show that the proposed CSMA/CA-RBTv scheme results in a significant improvement in both the transmission performance and the energy efficiency of the M2M network as the number of mobile nodes increases.
[1] P. C. Jain, “M2M Wireless Communication”, Annual Seminar on C-DAC Noida Technologies, 2012.
[2] M. Chen, J. Wan, and F. Li, “Machine-to-Machine Communications Architectures Standards and Application”, KSII Transactions on Internet and Information Systems, VOL. 6, NO. 2, pp.480 – 497, February 2012.
[3] D. Walczak, M. Wrzos , A. Radziuk, B. Lewandowski, and C. Mazurek, “Machine-to-Machine Communication and Data Processing Approach in Future Internet Applications”, Proceedings of the 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp. 1 – 5, 2012.
[4] D. Niyato, L. Xiao, P. Wang, “IEEE Communications Magazine”, VOL.49, NO. 4, pp. 53 – 59, 2011.
[5] Y. Zhang, R. Yu, S. Li Xie, W. Q. Yao, Y. Xiao, M. Guizani, “Home M2M networks: Architectures, standards, and QoS improvement”, IEEE Communications Magazine, VOL.49, NO. 4, pp. 44 – 52, 2011.
[6] M. Starsinic, “System architecture challenges in the home M2M network”, 2010 Long Island Systems Applications and Technology Conference (LISAT), pp. 1 - 7, 2010.
[7] G. Wu, S. Talwar, K. Johnsson, N. Himayat, K.D. Johnson, “M2M: From mobile to embedded internet”, IEEE Communications Magazine, VOL.49, NO. 4, pp. 36 – 43, 2011.
[8] R. X. Lu; X. Li; X. H. Liang, X. M. Shen, X. D. Lin, “GRS: The green, reliability, and security of emerging machine to machine communications”, IEEE Communications Magazine, VOL.49, NO. 4, pp. 28 – 35, 2011.
[9] IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11 Std., 2012.
[10] R. Palacios, F. Granelli, D. Kliazovich, L. Alonso, and J. Alonso-Zarate, “An Energy Efficient Distributed Coordination Function Using Bidirectional Transmissions and Sleep Periods for IEEE 802.11 WLANs”, Proceedings of 2013 IEEE Global Communications Conference (GLOBECOM), pp. 1619 – 1625, 2013.
[11] S. Bi and Y. J. Zhang, “Mitigating Power Law Delays: The Use of Polynomial Backoff in IEEE 802.11 DCF”, Proceedings of IEEE International Conference on Communications (ICC), pp. 5210 – 2515, 2012.
[12] M. Shurman, B. Al-Shua'b, M. Alsaedeen, M. F. Al-Mistarihi, and K. A. Darabkh, “N-BEB: New Backoff Algorithm for IEEE 802.11 MAC Protocol”, Proceedings of the 37th International Conference on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 540 – 544, 2014.
[13] A. Balador, A. Movaghar, “The Novel Contention Window Control Scheme for IEEE 802.11 Mac Protocol”, 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC), VOL.2, pp.134 – 137, 2010.
[14] K. Hong, S. Lee, K. Kim, and Y. Kim, “Channel Condition Based Contention Window Adaptation in IEEE 802.11 WLANs”, IEEE Transactions on Communications, VOL. 60, NO. 2, pp. 469 - 478, 2012.
[15] Q. Yu, Y. Q. Zhuang, L. X. Ma, “Dynamic Contention Window Adjustment Scheme for Improving Throughput and Fairness in IEEE 802.11 Wireless LANs”, Proceedings of 2012 IEEE Global Communications Conference (GLOBECOM), pp. 5074 - 5080, 2012.
[16] S. Chun, X. H. Dai, P. Y. Liang, Z. Han, “Adaptive Access Mechanism with Optimal Contention Window Based on Node Number Estimation Using Multiple Thresholds”, IEEE Transactions on Wireless Communications, VOL. 11, NO. 6, pp. 2046 - 2055, 2012.
[17] O. Tarasyuk, A. Gorbenko, V. Kharchenko, T. Hollstein, “Contention Window Adaptation to Ensure Airtime Consumption Fairness in Multirate Wi-Fi Networks”, 2014 10th International Conference on Digital Technologies (DT), pp. 344 - 349, 2014.
[18] A. Ganchev, L. Narayanan, “Selfishness detection for backoff algorithms in wireless networks”, 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 517 – 524, 2011.
[19] M. H. Cheng, W. S. Hwang, C. H. Lin, H. K. Su, “A Oneself Adjusts Backoff Mechanism for Channel Access in IEEE 802.11 DCF WLAN”, 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pp.287 - 292, 2013.
[20] I. Syed, B. S. Kim, B. H. Roh, I. H. Oh, “A novel contention window backoff algorithm for IEEE 802.11 wireless networks”, 2015 IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS), pp. 71 - 75, 2015.
[21] T. N. Munni, N. Mahbub, K. I. Nirjhor, M. F. Uddin, “On the optimal contention window size in IEEE 802.11 based WLANs under co-channel interference”, 2014 International Conference on Electrical and Computer Engineering (ICECE), pp. 394 - 397, 2014.
[22] Katsumi Sakakibara, Jumpei Taketsugu, “A new IEEE 802.11 DCF utilizing freezing experiences in backoff interval and its saturation throughput”, Journal of Communications and Networks, VOL. 12, NO. 1, pp. 43 – 51, 2010.
[23] P. Agrawal, A. Kumar, J. Kuri, M. K. Panda, V. Navda, R. Ramjee, “OPSM - Opportunistic Power Save Mode for Infrastructure IEEE 802.11 WLAN”, 2010 IEEE International Conference on Communications Workshops (ICC), pp. 1 – 6, 2010.
[24] W. N. W. Muhamad, J. Brown, J. Y. Khan, “A QoS guaranteed energy optimized packet transmission technique for the IEEE802.11 WLAN”, 2013 Australasian Telecommunication Networks and Applications Conference (ATNAC), pp. 219 – 224, 2013.
[25] B. Balaji, B. R. Tamma, and B. S. Manoj, “A Novel Power Saving Strategy for Greening IEEE 802.11 Based Wireless Networks”, Proceedings of 2010 IEEE Global Telecommunications Conference (GLOBECOM), pp. 1 – 5, 2010.
[26] H. H. Lin, H. Y. Wei, and R. Vannithamby, “DeepSleep: IEEE 802.11 Enhancement for Energy-Harvesting Machine-to-Machine Communications”, Proceedings of 2012 IEEE Global Communications Conference (GLOBECOM), pp. 5231 – 5236, 2012.
[27] C. M. Huang, R. S. Cheng, T. H. Tu, “CSMA/CARBT: A Novel Media Access and Power Saving Mechanisms for M2M Communications”, Proceedings of The Eleventh International Conference on Wireless and Mobile Communications (ICWMC), 2015.