| 研究生: |
劉明烜 LIU, MING-HSUAN |
|---|---|
| 論文名稱: |
具備個人化校正機制之智慧型手機rPPG生理資訊量測 Smartphone rPPG Vital Sign Measurement with Personalized Calibration Mechanism |
| 指導教授: |
侯廷偉
Hou, Ting-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 遠端光體積描記 、智慧型手機 、非接觸生理量測 、血壓推算 、個人化校正 、血氧飽和度 、呼吸率 |
| 外文關鍵詞: | remote photoplethysmography, smartphone, contactless vital signs, cuff-less blood pressure, personalized calibration, oxygen saturation, respiratory rate |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以智慧型手機為平台,探討一套著重於系統穩定性與工程可行性之rPPG (Remote Photoplethysmography)生理資訊量測架構。研究重點不在於單一演算法之創新,而是從系統層級出發,整合品質導向之訊號處理概念與個人化校正架構,分析多階段品質控管與校正策略對量測穩定性之影響,並評估其於實務量測情境中的可行性。
實驗結果顯示,導入品質導向設計概念與個人化校正機制後,整體量測結果在穩定性與一致性方面呈現改善趨勢,特別是在訊號品質變動較大的量測情境中更為明顯。相關結果顯示,系統層級之設計取捨與整合策略,對於rPPG 技術由研究方法走向實際裝置實作具有關鍵影響。
本研究聚焦於工程層級之方法探討與可行性分析,未以臨床診斷或醫療決策為研究目標。所提出之架構與觀察結果,可作為未來發展具實務可行性之rPPG 生理量測系統之參考。
This thesis investigates a smartphone-based remote photoplethysmography (rPPG) framework with an emphasis on system robustness and engineering feasibility. By integrating quality-oriented signal processing concepts and a personalized calibration framework, the proposed approach aims to improve measurement stability under unconstrained conditions. Experimental results demonstrate improved consistency and robustness of rPPG-based measurements. This work focuses on system-level analysis rather than clinical validation, and provides insights for practical deployment of rPPG on consumer devices.
[1] J. B. Cohen, R. L. Byfield, S. T. Hardy, et al., “Cuffless Devices for the Measurement of Blood Pressure: A Scientific Statement from the American Heart Association,” Hypertension, vol. 82, pp. e00–e00, 2025. doi:10.1161/HYP.0000000000000254.
[2] R. Mukkamala, M. Yavarimanesh, K. Natarajan, et al., “Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and Proposals,” Hypertension, vol. 78, no. 5, pp. 1161–1167, 2021. doi:10.1161/HYPERTENSIONAHA.121.17747.
[3] R. J. Lee, S. Sivakumar, and K. H. Lim, “Review on Remote Heart Rate Measurements Using Photoplethysmography, ”Multimedia Tools and Applications, vol. 83, pp. 44699–44728, 2024. doi:10.1007/s11042-023 16794-9.
[4] W. Chen, Z. Yi, L. J. R. Lim, et al., “Deep Learning and Remote Photoplethysmography Powered Advancements in Contactless Physiological Measurement,” Frontiers in Bioengineering and Biotechnology, vol. 12, art. 1420100, 2024. doi:10.3389/fbioe.2024.1420100.
[5] C. G. Scully, J. Lee, J. Meyer, et al., “Physiological Parameter Monitoring from Optical Recordings With a Mobile Phone, ” IEEE Transactions on Biomedical Engineering, vol. 59, no. 2, pp. 303–306, Feb. 2012.doi:10.1109/TBME.2011.2163157.
[6] M. Elgendi,“On the Analysis of Fingertip Photoplethysmogram Signals,”Current Cardiology Reviews, vol. 8, no. 1, pp. 14–25, 2012.
[7] A. Lam and Y. Kuno, "Robust Heart Rate Measurement from Video Using Select Random Patches," in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3640–3648.
[8] S. Tulyakov, X. Alameda-Pineda, E. Ricci, et al. Self-Adaptive Matrix Completion for Heart Rate Estimation from Face Videos under Realistic Conditions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2396–2404, 2016.
[9] W. Karlen, J. M. Ansermino, and G. A. Dumont, “Multiparameter Respiratory Rate Estimation from the Photoplethysmogram, IEEE Transactions on Biomedical Engineering, vol. 60, no. 7, pp. 1946–1953, 2013.
[10] J. S. Lee, G. Hwang, M. Ryu, and S. J. Lee, “LSTC-rPPG: Long Short-Term Convolutional Network for Remote Photoplethysmography,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2023.
[11] E. Allado, M. Poussel, J. Renno, et al., “Remote Photoplethysmography Is an Accurate Method to Remotely Measure Respiratory Rate: A Hospital-Based Trial, ”Journal of Clinical Medicine, vol. 11, art. 3647, 2022.doi:10.3390/jcm11133647.
[12] M. van Gastel and W. Verkruysse,“Contactless SpO₂ with an RGB camera: Experimental Proof of Calibrated SpO₂,”Biomedical Optics Express, vol. 13, no. 12, pp. 6791–6802, 2022.doi:10.1364/BOE.471332.
[13] A. M. Cabanas, N. Sáez, P. O. Collao-Caiconte, et al., “Evaluating AI Methods for Pulse Oximetry: Performance, Clinical Accuracy, and Comprehensive Bias Analysis, ”Bioengineering, vol. 11, art. 1061, 2024. doi:10.3390/bioengineering11111061.
[14] S. Yang, Y. Zhang, S.-Y. Cho, R. Correia, and S. P. Morgan, “Non-invasive Cuff-less Blood Pressure Estimation Using a Hybrid Deep Learning Model,” Optical and Quantum Electronics, vol. 53, art. 93, 2021. doi:10.1007/s11082-020-02667-0.
[15] G. de Haan and V. Jeanne, “Robust Pulse Rate from Chrominance-Based rPPG,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 10, pp. 2878–2886, 2013.
[16] International Medical Device Regulators Forum (IMDRF) SaMD Working Group, “Software as a Medical Device (SaMD): Application of Quality Management System,” IMDRF/SaMD WG/N23FINAL, 2015.