| 研究生: |
陳奕勛 Chen, Yi-Hsun |
|---|---|
| 論文名稱: |
全氟化物傳播至室內灰塵的途徑和機制之探討 Migration pathway and mechanism of perfluoroalkyl substances to indoor dust |
| 指導教授: |
陳?如
Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 全氟化物 、室內灰塵 、傳播途徑 、吸附 、pH值 、有機碳 、含水率 |
| 外文關鍵詞: | PFAS, indoor dust, migration pathway, adsorption, pH value, TOC content, water content |
| 相關次數: | 點閱:45 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全氟化物是人工合成的化合物,因為具有碳氟鍵及官能基,使其具有疏水及疏油特性被廣泛使用在生活用品及工業製程中。由於日常用品及室內裝潢的使用,全氟化物可能藉由不同途徑釋放到室內環境,並且累積於灰塵中,全氟化物在多個國家室內灰塵中皆有被測得,然而全氟化物傳輸至灰塵之途徑尚待研究探討,本研究欲要探討其可能的傳播途徑、機制及影響因子,將假設不同情境(包括直接接觸、磨損、昇華)來探討傳播途徑。研究中使用100%純棉布料作為全氟化物載體,並調整環境的pH值和灰塵的總有機碳及含水率,來探討這些因子對全氟化物吸附於灰塵之影響,進而討論其背後的傳輸機制。本研究挑選常用的四種全氟羧酸(PFCAs)和二種全氟磺酸(PFSAs),包含全氟丁酸(PFBA)、全氟己酸(PFHxA)、全氟辛酸(PFOA)、全氟壬酸(PFNA)、全氟己烷磺酸(PFHxS)和全氟辛烷磺酸(PFOS)進行實驗。
實驗方法皆是在1.5 L的PP罐子裡並放入布料及灰塵去模擬各種可能。就三種不同途徑而言,磨損是透過磁攪拌子旋轉去磨損含有全氟化物的布料來模擬磨損掉入灰塵內的行為,直接接觸是直接將含有全氟化物的布料與灰塵做直接接觸,昇華是將含有全氟化物的布料與灰塵分開放在同一PP罐子內,使全氟化物必須先昇華到空氣中,再吸附到灰塵上。就結果來看直接接觸的影響最大,所以後續實驗都以直接接觸的方式進行。調整pH值的方式為利用氫氧化鈉調整欲添加到布料上的PFAS溶液pH值,改變灰塵TOC的方式為將灰塵放到不同溫度的高溫爐燃燒,改變含水率的方式為將灰塵放入箱烘乾跟把灰塵和DI水放在同一個容器內使之吸收水氣。
實驗結果顯示,以布料作為全氟化物載體時,全氟化物在直接接觸的途徑最容易釋出並被灰塵所吸附,其次為磨損,最後為昇華。透過直接接觸,全氟化物在灰塵內的濃度大約是昇華的100倍,磨損的10倍。因此後續探討主要以直接接觸為主,當改變環境的pH值(即改變全氟化物之帶電性),發現灰塵內的全氟化物濃度在酸性條件下約10倍高於中性及鹼性的吸附量高達10倍,顯示全氟化物吸附於灰塵受靜電引力影響顯著。在同一個pH值下,不同碳鏈長在灰塵內也有不同吸附量,在灰塵內PFBA大約為PFNA的10倍,顯示短鏈的全氟化物較容易從布料釋出,而長碳鏈則傾向留在布料內,這也意謂著現今紡織業以短鏈全氟化物取代長鏈未必可以降低對環境危害,其影響尚未可知。此外,改變灰塵的總有機碳的實驗中,有機碳含量越高的灰塵,全氟化物的吸附量沒有增加反而降低,顯示灰塵內的其它成分例如礦物質可能才是貢獻吸附之主要成分。我們發現非有機碳成份越高,其吸附量也會隨之提升。對於改變灰塵含水率而言,含水率越低則全氟化物吸附量會越高,不過由於本實驗無法在反應過程中準確的控制灰塵含水率,因此需要解決這個問題才能進一步了解含水率與全氟化物吸附量的關係。
Perfluoroalkyl substance (PFAS) are synthetic compounds, which are widely used in daily necessities and industrial processes, because of their hydrophobic and oleophobic properties. Due to the use of daily necessities and upholstery, PFAS may be released into the indoor environment through different pathway, and adsorbed into dust then accumulated. PFAS have been detected in indoor dust in different countries, however the migration pathway of PFAS to dust needs to be further studied. This study intended to explore its possible migration pathway, mechanisms and affecting factors. Different scenarios (including direct contact, abrasion, and sublimation) were assumed to explore the migration pathway. In this study, 100% cotton fabric and dust were used, and the pH value of the environment and the total organic carbon and water content of the dust were adjusted to explore the impact of dust adsorption, and discussed the mechanism and affecting factors further. In this study, four commonly used perfluorocarboxylic acids (PFCAs) and two perfluorosulfonic acids (PFSAs) were selected, including perfluorobutyric acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononyl acid (PFNA), perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS).
The experimental methods were fabric and dust all placed in a 1.5 L PP container to simulate various possibilities. As for three different migration pathways, abrasion pathway was to simulate the behavior by rotating the magnetic stirrer on fabric that contained PFAS on the dust. Direct contact pathway was fabric that contained PFAS contact with dust directly. For sublimation pathway, fabric and dust were put separately in the same container, so that PFAS must sublimated into the air first, and then adsorbed to the dust. As far as the results were concerned, direct contact had the greatest impact, so subsequent experiments were carried out in the form of direct contact. The way to adjust the pH value was to use NaOH to adjust the pH value of the PFAS solution added to the fabric. The way to change TOC of the dust was put the dust into high temperature furnaces and burn them in different temperatures. The way to change the water content was put the dust into the oven and put dust and DI water in the same container to absorb moisture.
The results of this experiment show that in the case of no adhesive added to the fabric, PFAS were most easily released and absorbed by dust in the direct contact pathway, followed by abrasion, and finally by sublimation. Besides, through direct contact, the concentration of PFAS in dust was about 100 times higher compared to sublimation and 10 times higher compared to abrasion. Therefore, direct contact was further discussed. In the case of direct contact, when we changed the pH value of the environment, PFAS concentration in acidic condition was 10 times higher than neutral and basic condition. It showed that changing the pH value will change the charge of PFAS, which was then affected by electrostatic interaction. At the same pH value, different carbon chain lengths also had different adsorption capacity in dust. PFBA was about 10 times higher than PFNA, because short-chain PFAS were easier to be released from fabrics, while long carbon chains tended to stay in the fabric more. This also indicated that the replacement of long- chains by short-chain PFAS in the textile industry today might not reduce harm to the environment. For changing total organic carbon of the dust, the results were contrary to our expectation. We expected that the dust with higher organic carbon content would also have more adsorption of PFAS, but the results were just the opposite. The reason might be that the non-organic content in the dust were the key that affected the adsorption. We found that the higher the metal content, the higher the adsorption capacity. For changing water content of dust, the lower the water content, the higher the adsorption capacity of PFAS. However, since we could not accurately control the water content of dust during the reaction process, we needed to solve this problem to further understood the relationship between water content and PFAS adsorption.
Amato, F., M. Pandolfi, M. Viana, X. Querol, A. Alastuey, and T. Moreno. 2009. 'Spatial and chemical patterns of PM10 in road dust deposited in urban environment', Atmospheric Environment, 43: 1650-59.
Ao, J. J., T. Yuan, H. Xia, Y. N. Ma, Z. M. Shen, R. Shi, Y. Tian, J. Zhang, W. J. Ding, L. Gao, X. D. Zhao, and X. D. Yu. 2019. 'Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China', Environmental Pollution, 254.
Ateia, M., A. Maroli, N. Tharayil, and T. Karanfil. 2019. 'The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review', Chemosphere, 220: 866-82.
Bai, X. L., and Y. Son. 2021. 'Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA', Science of the Total Environment, 751.
Bako-Biro, Z., P. Wargocki, C. J. Weschler, and P. O. Fanger. 2004. 'Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices', Indoor Air, 14: 178-87.
Balk, F. G. P., K. W. Puetz, A. Ribbenstedt, M. I. Gomis, M. Filipovic, and I. T. Cousins. 2019. 'Children's exposure to perfluoroalkyl acids - a modelling approach', Environmental Science-Processes & Impacts, 21: 1875-86.
Barber, J. L., U. Berger, C. Chaemfa, S. Huber, A. Jahnke, C. Temme, and K. C. Jones. 2007. 'Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe', Journal of Environmental Monitoring, 9: 530-41.
Blokker, E., X. B. Sun, J. Poater, J. M. van der Schuur, T. A. Hamlin, and F. M. Bickelhaupt. 2021. 'The Chemical Bond: When Atom Size Instead of Electronegativity Difference Determines Trend in Bond Strength', Chemistry-a European Journal, 27: 15616-22.
Bright, D. A., G. M. Richardson, and M. Dodd. 2006. 'Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: A discussion of soil particle size and contaminant partitioning in soil', Human and Ecological Risk Assessment, 12: 591-605.
Brusseau, M. L., R. H. Anderson, and B. Guo. 2020. 'PFAS concentrations in soils: Background levels versus contaminated sites', Science of the Total Environment, 740.
Buck, R. C., S. H. Korzeniowski, E. Laganis, and F. Adamsky. 2021. 'Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS)', Integrated Environmental Assessment and Management, 17: 1045-55.
Buck, Robert C., James Franklin, Urs Berger, Jason M. Conder, Ian T. Cousins, Pim De Voogt, Allan Astrup Jensen, Kurunthachalam Kannan, Scott A. Mabury, and Stefan Pj Van Leeuwen. 2011. 'Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins', Integrated Environmental Assessment and Management, 7: 513-41.
Butte, W., and B. Heinzow. 2002. 'Pollutants in house dust as indicators of indoor contamination.' in G. W. Ware (ed.), Reviews of Environmental Contamination and Toxicology, Vol 175.
Buttner, M. P., and L. D. Stetzenbach. 1993. 'MONITORING AIRBORNE FUNGAL SPORES IN AN EXPERIMENTAL INDOOR ENVIRONMENT TO EVALUATE SAMPLING METHODS AND THE EFFECTS OF HUMAN ACTIVITY ON AIR SAMPLING', Applied and Environmental Microbiology, 59: 219-26.
Campo, J., M. Lorenzo, F. Perez, Y. Pico, M. Farre, and D. Barcelo. 2016. 'Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics', Environmental Research, 147: 503-12.
Chen, X. T., P. F. Yu, L. Xiang, H. M. Zhao, Y. W. Li, H. Li, X. Y. Zhang, Q. Y. Cai, C. H. Mo, and M. H. Wong. 2020. 'Dynamics, thermodynamics, and mechanism of perfluorooctane sulfonate (PFOS) sorption to various soil particle-size fractions of paddy soil', Ecotoxicology and Environmental Safety, 206.
Chen, Y. C., S. L. Lo, N. H. Li, Y. C. Lee, and J. Kuo. 2013. 'Sorption of perfluoroalkyl substances (PFASs) onto wetland soils', Desalination and Water Treatment, 51: 7469-75.
Clausen, P. A., V. Hansen, L. Gunnarsen, A. Afshari, and P. Wolkoff. 2004. 'Emission of Di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: Emission and sorption experiments in FLEC and CLIMPAQ', Environmental Science & Technology, 38: 2531-37.
Colt, J. S., R. B. Gunier, C. Metayer, M. G. Nishioka, E. M. Bell, P. Reynolds, P. A. Buffler, and M. H. Ward. 2008. 'Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children', Environmental Health, 7.
Conder, J. M., R. A. Hoke, W. De Wolf, M. H. Russell, and R. C. Buck. 2008. 'Are PFCAs bioaccumulative? A critical review and comparison with regulatory lipophilic compounds', Environmental Science & Technology, 42: 995-1003.
de la Torre, A., I. Navarro, P. Sanz, and M. D. Martinez. 2019. 'Occurrence and human exposure assessment of perfluorinated substances in house dust from three European countries', Science of the Total Environment, 685: 308-14.
Deng, S. B., Q. Y. Zhang, Y. Nie, H. R. Wei, B. Wang, J. Huang, G. Yu, and B. S. Xing. 2012. 'Sorption mechanisms of perfluorinated compounds on carbon nanotubes', Environmental Pollution, 168: 138-44.
Du, Z. W., S. B. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, and G. Yu. 2014. 'Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-A review', Journal of Hazardous Materials, 274: 443-54.
Eriksson, U., and A. Karrman. 2015. 'World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust', Environmental Science & Technology, 49: 14503-11.
Eryasa, B., P. Grandjean, F. Nielsen, D. Valvi, D. Zmirou-Navier, E. Sunderland, P. Weihe, and Y. Oulhote. 2019. 'Physico-chemical properties and gestational diabetes predict transplacental transfer and partitioning of perfluoroalkyl substances', Environment International, 130.
Franco, A., M. Hauschild, O. Jolliet, and S. Trapp. 2011. 'Atmospheric fate of non-volatile and ionizable compounds', Chemosphere, 85: 1353-59.
Fromme, H., W. Korner, N. Shahin, A. Wanner, M. Albrecht, S. Boehmer, H. Parlar, R. Mayer, B. Liebl, and G. Bolte. 2009. 'Human exposure to polybrominated diphenyl ethers (PBDE), as evidenced by data from a duplicate diet study, indoor air, house dust, and biomonitoring in Germany', Environment International, 35: 1125-35.
Fujii, S., C. Polprasert, S. Tanaka, N. P. H. Lien, and Y. Qiu. 2007. 'New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper', Journal of Water Supply Research and Technology-Aqua, 56: 313-26.
Gaillardon, P. 1996. 'Influence of soil moisture on long-term sorption of diuron and isoproturon by soil', Pesticide Science, 47: 347-54.
Goosey, E., and S. Harrad. 2012. 'Perfluoroalkyl substances in UK indoor and outdoor air: Spatial and seasonal variation, and implications for human exposure', Environment International, 45: 86-90.
Goss, K. U. 2008. 'The pK(a) values of PFOA and other highly fluorinated carboxylic acids', Environmental Science & Technology, 42: 456-58.
Halldorsson, T. I., D. Rytter, L. S. Haug, B. H. Bech, I. Danielsen, G. Becher, T. B. Henriksen, and S. F. Olsen. 2012. 'Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study', Environmental Health Perspectives, 120: 668-73.
Han, D. M., Y. G. Ma, C. Huang, X. F. Zhang, H. Xu, Y. Zhou, S. Liang, X. J. Chen, X. Q. Huang, H. X. Liao, S. Fu, X. Hu, and J. P. Cheng. 2019. 'Occurrence and source apportionment of perfluoroalkyl acids (PFAAs) in the atmosphere in China', Atmospheric Chemistry and Physics, 19: 14107-17.
Harrad, S., N. Wemken, D. S. Drage, M. A. E. Abdallah, and A. M. Coggins. 2019. 'Perfluoroalkyl Substances in Drinking Water, Indoor Air and Dust from Ireland: Implications for Human Exposure', Environmental Science & Technology, 53: 13449-57.
He, R. W., Y. Z. Li, P. Xiang, C. Li, C. Y. Zhou, S. J. Zhang, X. Y. Cui, and L. Q. Ma. 2016. 'Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment', Chemosphere, 150: 528-35.
Hidalgo, A., and N. Mora-Diez. 2015. 'Novel approach for predicting partition coefficients of linear perfluorinated compounds', Theoretical Chemistry Accounts, 135.
Hilal, S. H., S. W. Karickhoff, and L. A. Carreira. 1995. 'A rigorous test for SPARC's chemical reactivity models: Estimation of more than 4300 ionization pK(a)s', Quantitative Structure-Activity Relationships, 14: 348-55.
Houtz, E. F., C. P. Higgins, J. A. Field, and D. L. Sedlak. 2013. 'Persistence of Perfluoroalkyl Acid Precursors in AFFF-Impacted Groundwater and Soil', Environmental Science & Technology, 47: 8187-95.
Hwang, H. M., E. K. Park, T. M. Young, and B. D. Hammock. 2008. 'Occurrence of endocrine-disrupting chemicals in indoor dust', Science of the Total Environment, 404: 26-35.
Jogsten, I. E., M. Nadal, B. van Bavel, G. Lindstrom, and J. L. Domingo. 2012. 'Per- and polyfluorinated compounds (PFCs) in house dust and indoor air in Catalonia, Spain: Implications for human exposure', Environment International, 39: 172-80.
Johansson, J. H., Y. L. Shi, M. Salter, and I. T. Cousins. 2018. 'Spatial variation in the atmospheric deposition of perfluoroalkyl acids: source elucidation through analysis of isomer patterns', Environmental Science-Processes & Impacts, 20: 997-1006.
Johnson-Restrepo, B., and K. Kannan. 2009. 'An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States', Chemosphere, 76: 542-48.
Karaskova, P., M. Venier, L. Melymuk, J. Becanova, S. Vojta, R. Prokes, M. L. Diamond, and J. Klanova. 2016. 'Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America', Environment International, 94: 315-24.
Kemmlein, S., O. Hahn, and O. Jann. 2003. 'Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials', Atmospheric Environment, 37: 5485-93.
Kim, D. H., J. H. Lee, and J. E. Oh. 2019. 'Assessment of individual-based perfluoroalkly substances exposure by multiple human exposure sources', Journal of Hazardous Materials, 365: 26-33.
Kim, E. J., Y. M. Park, J. E. Park, and J. G. Kim. 2014. 'Distributions of new Stockholm Convention POPs in soils across South Korea', Science of the Total Environment, 476: 327-35.
Krafft, M. P., and J. G. Riess. 2015. 'Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one', Chemosphere, 129: 4-19.
Latif, M. T., N. H. Baharudin, Z. M. Nor, and M. Bin Mokhtar. 2011. 'Lead in PM10 and in Indoor Dust Around Schools and Preschools in Selangor, Malaysia', Indoor and Built Environment, 20: 346-53.
Lin, A. Y. C., S. C. Panchangam, Y. T. Tsai, and T. H. Yu. 2014. 'Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues', Environmental Monitoring and Assessment, 186: 3265-75.
Lioy, P. J., N. C. G. Freeman, and J. R. Millette. 2002. 'Dust: A metric for use in residential and building exposure assessment and source characterization', Environmental Health Perspectives, 110: 969-83.
Lv, Y., H. F. Wang, and S. S. Wei. 2018. 'The transmission characteristics of indoor particles under two ventilation modes', Energy and Buildings, 163: 1-9.
Mannino, M. R., and S. Orecchio. 2008. 'Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC-MS analysis, distribution and sources', Atmospheric Environment, 42: 1801-17.
Martin, J. W., B. J. Asher, S. Beesoon, J. P. Benskin, and M. S. Ross. 2010. 'PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure?', Journal of Environmental Monitoring, 12: 1979-2004.
Martin, R., K. Dowling, D. C. Pearce, S. Florentine, J. W. Bennett, and A. Stopic. 2016. 'Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements', Environmental Geochemistry and Health, 38: 1097-114.
Martz, M., J. Heil, B. Marschner, and B. Stumpe. 2019. 'Effects of soil organic carbon (SOC) content and accessibility in subsoils on the sorption processes of the model pollutants nonylphenol (4-n-NP) and perfluorooctanoic acid (PFOA)', Science of the Total Environment, 672: 162-73.
Mitra, S., and B. Ray. 1995. 'PATTERNS AND SOURCES OF POLYCYCLIC AROMATIC-HYDROCARBONS AND THEIR DERIVATIVES IN INDOOR AIR', Atmospheric Environment, 29: 3345-56.
Molhave, L., T. Schneider, S. K. Kjaergaard, L. Larsen, S. Norn, and O. Jorgensen. 2000. 'House dust in seven Danish offices', Atmospheric Environment, 34: 4767-79.
Nelson, J. W., E. E. Hatch, and T. F. Webster. 2010. 'Exposure to Polyfluoroalkyl Chemicals and Cholesterol, Body Weight, and Insulin Resistance in the General US Population', Environmental Health Perspectives, 118: 197-202.
Nguyen, T. M. H., J. Braunig, K. Thompson, J. Thompson, S. Kabiri, D. A. Navarro, R. S. Kookana, C. Grimison, C. M. Barnes, C. P. Higgins, M. J. McLaughlin, and J. F. Mueller. 2020. 'Influences of Chemical Properties, Soil Properties, and Solution pH on Soil-Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs)', Environmental Science & Technology, 54: 15883-92.
Olsen, G. W., J. M. Burris, D. J. Ehresman, J. W. Froehlich, A. M. Seacat, J. L. Butenhoff, and L. R. Zobel. 2007. 'Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers', Environmental Health Perspectives, 115: 1298-305.
Pan, Y. T., H. X. Zhang, Q. Q. Cui, N. Sheng, L. W. Y. Yeung, Y. Sun, Y. Guo, and J. Y. Dai. 2018. 'Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water', Environmental Science & Technology, 52: 7621-29.
Prevedouros, K., I. T. Cousins, R. C. Buck, and S. H. Korzeniowski. 2006. 'Sources, fate and transport of perfluorocarboxylates', Environmental Science & Technology, 40: 32-44.
Qi, H., W. L. Li, N. Z. Zhu, W. L. Ma, L. Y. Liu, F. Zhang, and Y. F. Li. 2014. 'Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in Chinal', Science of the Total Environment, 491: 100-07.
Rasmussen, P. E., S. Beauchemin, M. Nugent, R. Dugandzic, M. Lanouette, and M. Chenier. 2008. 'Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil', Human and Ecological Risk Assessment, 14: 351-71.
Rauert, C., and S. Harrad. 2015. 'Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways - A test chamber investigation', Science of the Total Environment, 536: 568-74.
Rauert, C., S. Harrad, M. Stranger, and B. Lazarov. 2015. 'Test chamber investigation of the volatilization from source materials of brominated flame retardants and their subsequent deposition to indoor dust', Indoor Air, 25: 393-404.
Rauert, C., S. Harrad, G. Suzuki, H. Takigami, N. Uchida, and K. Takata. 2014. 'Test chamber and forensic microscopy investigation of the transfer of brominated flame retardants into indoor dust via abrasion of source materials', Science of the Total Environment, 493: 639-48.
Rauert, C., I. Kuribara, T. Kataoka, T. Wada, N. Kajiwara, G. Suzuki, H. Takigami, and S. Harrad. 2016. 'Direct contact between dust and HBCD-treated fabrics is an important pathway of source-to-dust transfer', Science of the Total Environment, 545: 77-83.
Rauert, C., B. Lazarov, S. Harrad, A. Covaci, and M. Stranger. 2014. 'A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants', Atmospheric Environment, 82: 44-55.
Roy, C., P. Gaillardon, and F. Montfort. 2000. 'The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties', Pest Management Science, 56: 795-803.
Schnelle-Kreis, J., H. Scherb, I. Gebefugi, A. Kettrup, and E. Weigelt. 2000. 'Pentachlorophenol in indoor environments. Correlation of PCP concentrations in air and settled dust from floors', Science of the Total Environment, 256: 125-32.
Schripp, T., C. Fauck, and T. Salthammer. 2010. 'Chamber studies on mass-transfer of di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DnBP) from emission sources into house dust', Atmospheric Environment, 44: 2840-45.
Shimizu, M. S., R. Mott, A. Potter, J. Q. Zhou, K. Baumann, J. D. Surratt, B. Turpin, G. B. Avery, J. Harfmann, R. J. Kieber, R. N. Mead, S. A. Skrabal, and J. D. Willey. 2021. 'Atmospheric Deposition and Annual Flux of Legacy Perfluoroalkyl Substances and Replacement Perfluoroalkyl Ether Carboxylic Acids in Wilmington, NC, USA', Environmental Science & Technology Letters, 8: 366-72.
Su, H. Q., Y. L. Lu, P. Wang, Y. J. Shi, Q. F. Li, Y. Q. Zhou, and A. C. Johnson. 2016. 'Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure', Environment International, 94: 667-73.
Tian, Z., S. K. Kim, M. Shoeib, J. E. Oh, and J. E. Park. 2016. 'Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: Implication to exposure pathway', Science of the Total Environment, 553: 266-75.
Vejrup, K. V., and P. Wolkoff. 2002. 'Linear alkylbenzene sulfonates in indoor floor dust', Science of the Total Environment, 300: 51-58.
Vella, A. J., C. Chircop, T. Micallef, and C. Pace. 2015. 'Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks', Science of the Total Environment, 521: 46-51.
Vicente, E. D., A. Vicente, T. Nunes, A. Calvo, C. del Blanco-Alegre, F. Oduber, A. Castro, R. Fraile, F. Amato, and C. Alves. 2019. 'Household Dust: Loadings and PM10-Bound Plasticizers and Polycyclic Aromatic Hydrocarbons', Atmosphere, 10.
Vu, C. T., and T. T. Wu. 2020. 'Adsorption of short-chain perfluoroalkyl acids (PFAAs) from water/wastewater', Environmental Science-Water Research & Technology, 6: 2958-72.
Wan, Y. J., Q. Wu, K. O. Abualnaja, A. G. Asimakopoulos, A. Covaci, B. Gevao, B. Johnson-Restrepo, T. A. Kumosani, G. Malarvannan, H. B. Moon, H. Nakata, R. K. Sinha, T. B. Minh, and K. Kannan. 2015. 'Occurrence of perchlorate in indoor dust from the United States and eleven other countries: Implications for human exposure', Environment International, 75: 166-71.
Wang, W., X. Mi, Z. M. Zhou, S. X. Zhou, C. L. Li, X. Hu, D. L. Qi, and S. B. Deng. 2019. 'Novel insights into the competitive adsorption behavior and mechanism of per- and polyfluoroalkyl substances on the anion-exchange resin', Journal of Colloid and Interface Science, 557: 655-63.
Wang, Y., W. J. Rogan, H. Y. Chen, P. C. Chen, P. H. Su, H. Y. Chen, and S. L. Wang. 2015. 'Prenatal exposure to perfluroalkyl substances and children's IQ: The Taiwan maternal and infant cohort study', International Journal of Hygiene and Environmental Health, 218: 639-44.
Wang, Y., W. J. Rogan, P. C. Chen, G. W. Lien, H. Y. Chen, Y. C. Tseng, M. P. Longnecker, and S. L. Wang. 2014. 'Association between Maternal Serum Perfluoroalkyl Substances during Pregnancy and Maternal and Cord Thyroid Hormones: Taiwan Maternal and Infant Cohort Study', Environmental Health Perspectives, 122: 529-34.
Wang, Z. Y., M. MacLeod, I. T. Cousins, M. Scheringer, and K. Hungerbuhler. 2011. 'Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs)', Environmental Chemistry, 8: 389-98.
Wilson, N. K., J. C. Chuang, and C. Lyu. 2001. 'Levels of persistent organic pollutants in several child day care centers', Journal of Exposure Analysis and Environmental Epidemiology, 11: 449-58.
Winkens, K., G. Giovanoulis, J. Koponen, R. Vestergren, U. Berger, A. M. Karvonen, J. Pekkanen, H. Kiviranta, and I. T. Cousins. 2018. 'Perfluoroalkyl acids and their precursors in floor dust of children's bedrooms - Implications for indoor exposure', Environment International, 119: 493-502.
Winkens, K., J. Koponen, J. Schuster, M. Shoeib, R. Vestergren, U. Berger, A. M. Karvonen, J. Pekkanen, H. Kiviranta, and I. T. Cousins. 2017. 'Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms', Environmental Pollution, 222: 423-32.
Xiang, L., T. Xiao, P. F. Yu, H. M. Zhao, C. H. Mo, Y. W. Li, H. Li, Q. Y. Cai, D. M. Zhou, and M. H. Wong. 2018. 'Mechanism and Implication of the Sorption of Perfluorooctanoic Acid by Varying Soil Size Fractions', Journal of Agricultural and Food Chemistry, 66: 11569-79.
Xu, Z. L., S. Fiedler, G. Pfister, B. Henkelmann, C. Mosch, W. Volkel, H. Fromme, and K. W. Schramm. 2013. 'Human exposure to fluorotelomer alcohols, perfluorooctane sulfonate and perfluorooctanoate via house dust in Bavaria, Germany', Science of the Total Environment, 443: 485-90.
Yadav, I. C., N. L. Devi, J. Li, and G. Zhang. 2018. 'Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect', Science of the Total Environment, 616: 223-35.
Yang, L., L. Y. He, J. M. Xue, Y. F. Ma, Z. Y. Xie, L. Wu, M. Huang, and Z. L. Zhang. 2020. 'Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective', Journal of Hazardous Materials, 393.
Yu, Y. X., D. Yang, X. X. Wang, N. B. Huang, X. Y. Zhang, D. P. Zhang, and J. M. Fu. 2013. 'Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters', Chemosphere, 93: 2603-11.