| 研究生: |
周琪 Zhou, Qi |
|---|---|
| 論文名稱: |
鋁蜂巢牆板內置微膠囊相變化材料之動態熱傳特性 Thermal Performance of Aluminum Honeycomb Wallboards Incorporating Microencapsulated PCM Under Dynamic Conditions |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 相變化材料 、溫度 、熱流 、能源節約 、綠色建築 |
| 外文關鍵詞: | Phase change material(PCM), Temperature, Heat flux, Energy saving, Green architecture |
| 相關次數: | 點閱:166 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築中相變化材料(Phase Change Material,PCM)的應用是綠色建築領域近年來備受關注的課題。相變化材料在固態或液態的相變化(熔解或凝固)過程中,能有效地儲存或釋放大量的潛熱,而這一特點,在潛熱儲熱、節約能源、提高空間熱舒適性等方面可以發揮非常大的作用。
本研究,將微膠囊相變化材料與鋁蜂巢建築構造結合,利用鋁蜂巢作為結構支撐與熱傳通道,研製而成內含微膠囊相變化材料之鋁蜂巢牆板,將其應用到居室環境中,對其熱傳特性等進行研究,以此來分析此相變化材料在實際建築中應用的可行性與效果。為了更好地比較分析,本實驗設計了多個組別,考慮了不同的日射熱得及不同的相變化材料的熔點溫度。通過不同的對比討論,得出結論。相變化材料應用到建築中,可以降低室內峰值溫度和熱流,延後峰值溫度和熱流到來的時間,降低能源消耗且帶來良好的空間舒適性。
Application of the phase change material (PCM) in the field of architecture is more and more popular in the study of green architectures. During the processes of melting or solidification, phase change materials can effectively release or store a significant amount of latent heat. So it will be very potential in latent heat thermal energy storage, energy saving, thermal comfort and so on.
In this study, combine the microencapsulated phase change materials with an aluminum honeycomb building construction, structural for support and heat transfer channel, to complete aluminum honeycomb wallboards incorporating microencapsulated phase change materials. Place it in a space which simulates the natural environment and study its thermal performance. At last, the purpose of the study is to know if it is possible and appropriate to use the PCM in the real buildings. In order to compare and analyze better, six groups are designed in this experiment. Different solar heat gains and different melting points of the phase change materials are considered. The conclusions will be obtained after contrast and discussion. Application of the phase change material can reduce the indoor temperature and heat flux peak, delay the peak arrival time. So it reduces energy consumption and brings good space thermal comfort.
[1] Y.P. Zhang, G.B. Zhou, K.P. Lin, Q.L. Zhang, H.F. Di. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment 42 (2007) 2197–2209.
[2] T. Karlessi, M. Santamouris, A. Synnefa, D. Assimakopoulos, P. Didaskalopoulos, K. Apostolakis. Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings. Building and Environment 46 (2011) 570-576.
[3] A.C. Evers, M.A. Medina, Y. Fang. Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator. Building and Environment 45 (2010) 1762-1768.
[4] S.E. Kalnæs, B.P. Jelle. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings 94 (2015) 150–176.
[5] Silva, R. Vicente, F. Rodrigues, A. Samagaio, C. Cardoso. Development of a window shutter with phase change materials: Full scale outdoor experimental approach. Energy and Buildings 88 (2015) 110–121.
[6] K. Darkwa, J. S. Kim. Thermal Analysis of Composite Phase Change Drywall Systems. 2005.
[7] Lecompte, P.L. Bideau, P. Glouannec, D. Nortershauser, S.L. Masson. Mechanical and thermo-physical behaviour of concretes and mortarscontaining phase change material. Energy and Buildings 94 (2015) 52–60.
[8] I. Mandilaras, M. Stamatiadou, D. Katsourinis, G. Zannis, M. Founti. Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Building and Environment 61 (2013) 93-103.
[9] A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman. Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage. Building and Environment (1997) 405-410.
[10] T.Y. Zhou, J. Darkwa, G. Kokogiannakis. Thermal evaluation of laminated composite phase change material gypsum board under dynamic conditions. Renewable Energy 78 (2015) 448–456.
[11] G. Evola, L. Marletta, F. Sicurella. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Building and Environment 59 (2013) 517-527.
[12] M.D. Grassi, A. Carbonari, G. Palomba. A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls. Building and Environment 41 (2006) 448–485.
[13] A.M. Khudhair, M.M. Farid. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management, 2004, 45: 263—275.
[14] K. Darkwa. Evaluation of regenerative phase change drywalls: low-energy buildings application. Int. J. Energy Res. 23(14): 1205-1212. 1999.
[15] K.P. Lin, Y.P. Zhang, X. Xu, H.F. Di, R. Yang, P.H. Qin. Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates. Building and Environment 39 (2004) 1427–1434.
[16] M.M. Hassan, Y. Beliveau. Modeling of an integrated solar system. Building and Environment 43 (2008) 804–810.
[17] Q. Wang, C.Y. Zhao. Parametric investigations of using a PCM curtain for energy efficientbuildings. Energy and Buildings 94 (2015) 33–42.
[18] A.D. Gracia, A. Castell, C. Fernández, L.F. Cabeza. A simple model to predict the thermal performance of a ventilatedfacade with phase change materials. Energy and Buildings 93 (2015) 137–142.
[19] S.L. Liu, Y.C. Li. An experimental study on the thermal performance of a solar chimney without and with PCM. Renewable Energy 81 (2015) 338–346.
[20] M. Koschenz, B. Lehmann. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energ Buildings. 2004, 36: 567—578.
[21] B.L. Gowreesunker, S.A. Tassou. Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces. Building and Environment 59 (2013) 612-625.
[22] P.C.T. Velasco, C. Christensen, M. Bianchi. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment 54 (2012) 186-196.
[23] 施泓銘,「內含微膠囊相變化材料之散熱模組」, 南台科技大學機械工程系碩士論文,2013。
校內:立即公開