| 研究生: |
趙奕涵 Chao, Yi-Han |
|---|---|
| 論文名稱: |
利用具有彎曲流道之聲波微流體晶片進行粒子塗層 Conformal coating of microparticles using an acoustofluidic microchip with a serpentine channel |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 微流體 、表面聲波 、鈮酸鋰 、聚二甲基矽氧烷 、電解質多層膜 |
| 外文關鍵詞: | microfluidics, surface acoustic wave (SAW), polydimethyl siloxane(PDMS), lithium niobate, polyelectrolyte multilayers |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在醫藥科學、化學與工程學當中,常常在微粒子表面進行塗佈或是表面改質。而目前微流體塗層或是表面改質的技術大多利用磁力或是或是慣性力讓粒子穿越多層的化學物質。利用磁力或是流體力學的方式往往對於粒子本身會有一些前處理或是對於不同的粒子需要不同的流道設計,這些前處理可能會破壞某些粒子特性,若通入粒子為細胞,這些處理可能直接殺死細胞。因此我們研發一個方式,利用單邊指叉狀(interdigital transducer, IDT)電極在壓電材料上產生表面聲波(surface acoustic wave , SAW),讓聲波傳遞至流道內並且推動粒子橫跨多層流道,利用聲波的特性就不須對於粒子或細胞進行預先標記或是表面處理,也不會對微粒子有任何的汙染,可以使細胞在新鮮的狀態下進行表面塗佈或是表面改質,這樣的方法幾乎適用於所有微粒子。
本研究旨在探討如何利用聲波晶片使粒子在彎曲流道內進行橫向移動,以及找出最適合的操作區間,並嘗試在PS粒子表面塗佈PAH與PSS等兩種帶電高分子。由實驗可知,聲波力會因為流道距離IDT越遠而遞減,在使用聯結層的情況下,最靠近IDT的流道(第一流道)內的粒子受到聲波力最強,次靠近IDT的流道(第二流道)內的粒子受到聲波所產生的peripheral streaming作用明顯,其餘流道內粒子受力隨流道與IDT距離的增加而遞減。粒子在經過多層流後表面電位因帶電高分子的層塗而改變,確實達成了粒子的表面層塗。
In this study, the serpentine, surface acoustic wave microchips were used to perform conformal coating of microparticles. The reusable chip was used where the PDMS channel was bonded to the thin glass and n-dodecane was used as a coupling layer to contact a lithium niobate substrate. The results showed that the particles can move across the channel after applying SAW. Accumulation of particles along the channel wall was observed at high voltage applied (40VPP). The particles were not able to move across the channel when low voltage was applied (<30VPP). Using reusable chip with the serpentine channel design, the particles can be coated with polyelectrolyte.
[1] J. Shi, D. Ahmed, X. Mao and T. J. Huang, "Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels," Micro Electro Mechanical, vol. , pp. 26-29, Jan 2008.
[2] H. Li, J. R. Friend, and L. Y. Yeo, "A scaffold cell seeding method driven by surface acoustic waves," Biomaterials, vol. 28, pp. 4098-4104, Oct 2007.
[3] L. Rayleigh, "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings of the London Mathematical Society, vol. s1-17, pp. 4-11, November 1, 1885.
[4] R. White, and F. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Applied physics letters, vol. 7, no. 12, pp. 314-316, 1965.
[5] B. T. Matthias and J. P. Remeika, "Ferroelectricity in the Ilmenite Structure," Physical Review, vol. 76, pp. 1886-1887, 12/15/ 1949.
[6] L. King, “On the Acoustic Radiation Pressure on Spheres,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 147, Issue 861, pp. 212-240,1934.
[7] Ghulam Destgeer,a Kyung Heon Lee, Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW) , Lab on a Chip, 13, 4210, 2013.
[8] Kowronek V, Rambach RW, Schmid L ”Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence.” Analytical chemistry 85:9955–9959, pp. 9 /2 / 2013.
[9] J. Shi, S. Yazdi, S.-C. S. Lin, X. Ding, I.-K. Chiang, K. Sharp, et al., "Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 11, pp. 2319-2324, 2011.
[10] S. Kerbel: ”Design of harmonic surface acoustic wave (SAW) oscillators without external filltering and new data on the temperature coefficient of quartz”, IEEE Ultrasonics Symp, Proc. pp.276-281, 1974.
[11] T. Saiki, K. Okada, and Y. Utsumi, "Highly Efficient Liquid Flow Actuator Operated by Surface Acoustic Waves," Electronics and Communications in Japan, vol. 94, pp. 10-16, Oct 2011.
[12] Jin Ho Jung, Ghulam Destgeer,“On demand droplet splitting using surface acoustic waves”, Lab on a Chip, 16, 3235, 2016.
[13] Ghulam Destgeer, Hyunjun Cho, “Acoustofluidic particle manipulation nside a sessile droplet: four distinct regimes of particle oncentration”, Lab on a Chip,16, 660 ,2016.
[14] Viktor Skowronek ,Richard W. Rambach ,Thomas Franke, “Surface acoustic wave controlled integrated band‑pass filter” , Microflui Nanofluid ,19:335–341, 2015.
[15] Kar M.Ang , LeslieY.Yeo ,” Nozzleless spray cooling using surface acoustic waves”, Journal of Aerosol Science,79,pp 48–60,2015
[16] Liu, Shilei, et al. "Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields." Sensors 17.7 (2017): 1664.
[17] Martin Wiklunda Roy Green and Mathias Ohlin,” Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices”, Lab on a Chip, 12, 2438–2451,2012.
[18] Steven Mahon, Robert Aigner,” Bulk Acoustic Wave Devices – Why, How, and Where They are Going” , CS MANTECH Conference, May 14-17, 2007.
[19] H.P. Lobl , M. Klee et al,” Materials for bulk acoustic wave (BAW) resonators and filters,” Journal of the European Ceramic Society, 21,2633–2640, 2001.
[20] J. Shi, H. Huang, Z. Stratton et al., “Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 9, no. 23, pp. 3354-3359, 2009.
[21] K. Yosioka, and Y. Kawasima, “Acoustic radiation pressure on a compressible sphere,” Acta Acustica united with Acustica, vol. 5, no. 3, pp. 167-173, 1955.
[22] J. Shi, X. Mao, D. Ahmed et al., “Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 8, no. 2, pp. 221-223, 2008.
[23] Armaghan Fakhfouri, Citsabehsan Devendran et al.,” Surface acoustic wave diffraction driven mechanisms in microfluidic systems,”Lab on a Chip, 2018, 18, 2214
[24] Jaffrezic-Renault, Nicole, et al. "Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads." Sensors 7.4 ,pp 589-614,2007.
[25] Langer, Robert. "Biomaterials in drug delivery and tissue engineering: one laboratory's experience." Accounts of Chemical Research 33.2,pp: 94-101, 2009.
[26] García-Alonso, Javier, et al. "Microscreening toxicity system based on living magnetic yeast and gradient chips." Analytical and bioanalytical chemistry 400.4 (2011): 1009-1013.
[27] Scott S. H. Tsai, Jason S. Wexler et al.,” Conformal coating of particles in microchannels by magnetic forcingConformal coating of particles in microchannels by magnetic forcing” APPLIED PHYSICS LETTERS 99, 153509 (2011)
[28] Byeong-Ui Moon, Navid Hakimi et al.,” Microfluidic conformal coating of non-spherical magnetic particles” BIOMICROFLUIDICS 8, 052103 ,2014.
[29] Masumi Yamada, Jun Kobayashi et al.,” Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange” Lab on a Chip, 8, 772–778, 2008.
[30] Ayan, Bugra, et al. "Acoustofluidic coating of particles and cells." Lab on a Chip 16.22 (2016): 4366-4372.
[31] Kantak, Chaitanya, et al. "A microfluidic pinball’for on-chip generation of layer-by-layer polyelectrolyte microcapsules." Lab on a Chip 11.6 (2011): 1030-1035.
[32] 廖廷瑋. "探討聯結層之作用於可重複使用之聲波微流體晶片." 成功大學化學工程學系學位論文 (2018): 1-97.