簡易檢索 / 詳目顯示

研究生: 蔡庭嘉
Tsai, Ting-Chia
論文名稱: 以沉積後退火製程改善氧化鋁金氧半高電子遷移率電晶體之電性表現
Improvement of Electrical Performance of Al2O3 Metal-Oxide-Semiconductor HEMTs by Post Deposition Annealing
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 85
中文關鍵詞: 氮化鋁鎵/氮化鎵高電子遷移率電晶體三氧化二鋁field plate結構崩潰電壓沉積後退火
外文關鍵詞: AlGaN/GaN HEMTs, Al2O3, field plate, breakdown voltage, post deposition annealing
相關次數: 點閱:151下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 5G時代來臨,氮化鎵因為高能隙、高崩潰電壓、高電子飽和速度等等優點,使它成為半導體界的寵兒。而本實驗所用的氮化鋁鎵/氮化鎵高電子遷移率電晶體因為本身結構所產生的極化現象,讓電子被侷限在氮化鋁鎵與氮化鎵接面處進行二維平面運動,造就高濃度的二維電子氣,這使得HEMT能夠輸出大電流工作。
    本實驗成功製作出增強型與空乏型的三氧化二鋁金氧半高電子遷移率電晶體,並利用沉積後退火製成改善三氧化二鋁氧化層的品質,以及運用field plate結構提升崩潰電壓。在增強型方面,改善後在閘極電壓為5V時的最大汲極電流為351mA/mm,最大轉導值為83mS/mm,次臨界擺幅與電流開關比為115mV/decade和1.8 x 108。閘極漏電流為8.75 x 10-7mA/mm,崩潰電壓為210V。而在空乏型方面,改善後在閘極電壓為5V時的最大汲極電流為570mA/mm,最大轉導值為106mS/mm,次臨界擺幅與電流開關比為125mV/decade和4.2 x 108。閘極漏電流為1.21 x 10-4mA/mm,崩潰電壓為173V。

    In the upcoming 5G generation, due to many advantages of GaN, such as wide band gap, high breakdown voltage, and high electron saturation velocity, GaN has become the best candidate for RF and power applications. Because of the polarization effects caused by AlGaN/GaN heterostructures, electrons are confined at the interface of AlGaN/GaN, leading to high concentrations of 2DEG, so AlGaN/GaN HEMTs exhibit better current performance than other transistors.
    The objective of this thesis as to fabricate E-mode and D-mode Al2O3 MOS-HEMTs. In order to achieve better performance, we improved the quality of the Al2O3 dielectric layers by post deposition annealing and enhanced the breakdown voltage by field plate. In the E-mode HEMTs, the maximum drain current was 351mA/mm at VGS=5V; the maximum transconductance was 83mS/mm; the S.S. and on-off ratio were 115mV/decade and 1.8 x 108, respectively. The gate leakage current was 8.75 x 10-7mA/mm, and the breakdown voltage was 210V. In D-mode HEMTs, the maximum drain current was 570mA/mm at VGS=5V; the maximum transconductance was 106mS/mm; the S.S. and on-off ratio were 125mV/decade and 4.2 x 108, respectively. The gate leakage current was 1.21 x 10-4mA/mm, and the breakdown voltage was 173V.

    中文摘要 I Abstract III 致謝 V Contents VII List of Tables IX List of Figures X Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 3 1-3 Organization 6 Chapter 2 AlGaN/GaN HEMT 7 2-1 Lattice Structure 7 2-2 Polarization effect of AlGaN/GaN heterostructure 9 2-2-1 Spontaneous Polarization 9 2-2-2 Piezoelectric Polarization 11 2-3 The formation of 2DEG 13 Chapter 3 Experiments and Device Fabrication 15 3-1 Experimental equipment 15 3-1-1 Spin coater & Oven 15 3-1-2 Mask Aligner 15 3-1-3 Electron Beam Evaporator 16 3-1-4 ICP Etching 16 3-1-5 Rapid Thermal Annealing (RTA) 17 3-1-6 Electron Beam Lithography 17 3-3-7 Atomic Layer Deposition 18 3-3-8 B1500A Semiconductor Device Parameter Analyzer 18 3-2 Fabrication Process 23 3-2-1 Mesa Isolation 23 3-2-2 Source Drain Lithography 24 3-3-3 Ti/Al/Ni/Au Deposition & RTA 25 3-3-4 Gate Recess 26 3-3-5 Nitrogen Plasma Treatment 27 3-3-6 Al2O3 Deposition by ALD 28 3-3-7 Gate Field Plate Lithography 29 3-3-8 Process Flow Diagram 30 Chapter 4 Results and Discussion 38 4-1 Properties of the Al2O3 Oxide Layer 38 4-1-1 TEM images 38 4-1-2 SADP 40 4-1-3 EDS Analysis 41 4-2 Comparison of Devices With and Without the Field Plate 45 4-3 Comparison of the Device Performance Based on Various PDA Temperatures 46 4-3-1 ID-VD 46 4-3-2 ID-VG 51 4-3-3 IG-VG 58 4-3-4 Off-State Breakdown Voltage 60 4-3-5 Pulse I-V Characteristics 62 4-3-6 C-V Measurement 65 4-3-7 Cut off Frequency and Maximum Oscillation Frequency 67 4-3-8 Flicker Noise 69 Chapter 5 Conclusion 71 Chapter 6 Future Work 75 References 78 List of Tables Table 1-1 A comparison of GaN properties with other materials 2 Table 2-1 Lattice constants for various nitride materials 10 Table 2-2 The piezoelectric polarization parameters 12 Table 3-1 Parameters of the 6-inch epi wafer 30 Table 4-1 Comparison of the transconductance before and after PDA(mS/mm) 57 Table 4-2 Comparison of the subthreshold swing before and after PDA(mV/decade) 57 Table 5-1 Comparison of various HEMTs before and after PDA 73 Table 5-2 Comparison with other Al2O3 MOS-HEMTs 74 List of Figures Fig. 1-1 The electric field distribution for the device with and without the field plate 5 Fig. 2-1 Two types of crystal structures for group-III nitrides: (a) hexagonal wurtzite (b) cubic zinc-blende. 8 Fig. 2-2 Different vectors in a hexagonal wurtzite structure 8 Fig. 2-3 Ga-face and N-face crystal structures 10 Fig. 2-4 Spontaneous piezoelectric polarization and induced charges at the interface 12 Fig. 2-5 AlGaN/GaN HEMT band diagram 14 Fig. 3-1 Spin Coater & Oven. 19 Fig. 3-2 Mask Aligner. 20 Fig. 3-3 Electron Beam Evaporator 20 Fig. 3-4 ICP Etching System 21 Fig. 3-5 RTA. 21 Fig. 3-6 Electron Beam Lithography 22 Fig. 3-7 ALD System 22 Fig. 3-8 The 6-inch epi wafer used in the experiments 30 Fig. 3-9 A cross-sectional schematic view of the Al2O3 MOS-HEMTs 36 Fig. 3-10 Image of the Al2O3 MOS-HEMTs under the optical microscope 37 Fig. 4-1 TEM images of the different layers 38 Fig. 4-2 Comparison of Al2O3 before and after PDA 39 Fig. 4-3 SADP of Al2O3 after PDA at 400oC 40 Fig. 4-4 EDS mapping of Ni, Al, and O 41 Fig. 4-5 EDS Line Scan of Ni, Al, and O 43 Fig. 4-6 EDS mapping of the black line between Ni and Au 44 Fig. 4-7 A Breakdown Voltage Comparison of Devices with and without Field Plate 45 Fig. 4-8 ID-VD for the D-mode and E-mode HEMTs. 47 Fig. 4-9 ID-VD of the D-mode before and after PDA 49 Fig. 4-10 ID-VD of the E-mode before and after PDA 50 Fig. 4-11 Linear ID-VG of the D-mode HEMTs 52 Fig. 4-12-1 Approximation of Vth in the D-mode HEMTs after PDA 53 Fig. 4-13 Linear ID-VG of the E-mode HEMTs 53 Fig. 4-14 Approximation of Vth in the E-mode HEMTs before PDA 54 Fig. 4-14-1 Approximation of Vth in the E-mode HEMTs after PDA 54 Fig. 4-15 Log ID-VG of the D-mode HEMTs 55 Fig. 4-16 Log ID-VG of the E-mode HEMTs 55 Fig. 4-17 Transconductance of the D-mode HEMTs before and after PDA 56 Fig. 4-18 Transconductance of the E-mode HEMTs before and after PDA 56 Fig. 4-19 IG-VG of the D-mode HEMTs before and after PDA 59 Fig. 4-20 IG-VG of the E-mode HEMTs before and after PDA 59 Fig. 4-21 Breakdown Voltages of the D-mode HEMTs Before and After PDA 60 Fig. 4-22 Breakdown Voltages of the E-mode HEMTs Before and After PDA 61 Fig. 4-23 Pulse I-V of the D-mode HEMTs before PDA 63 Fig. 4-24 Pulse I-V of the D-mode HEMTs after PDA 63 Fig. 4-25 Pulse I-V of the D-mode HEMTs before PDA 64 Fig. 4-26 Pulse I-V of the E-mode HEMTs after PDA 64 Fig. 4-27 C-V hysteresis of the D-mode HEMTs before PDA @ 1MHZ 65 Fig. 4-28 C-V hysteresis of the D-mode HEMTs after PDA @ 1MHZ 66 Fig. 4-29 Multi-frequency C-V curve of the D-mode HEMTs 66 Fig. 4-30 The fT and fMAX of D-mode and E-mode HEMTs before and after PDA. 68 Fig. 4-31 The flicker noise of D-mode and E-mode HEMTs before and after PDA. 70 Fig. 6-1 Multi-finger MOS-HEMTs under the Optical Microscope 76 Fig. 6-2 Linear ID-VG of Multi-finger MOS-HEMTs 77 Fig. 6-3 Log ID-VG of Multi-finger MOS-HEMTs 77  

    [1] W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, “Demonstration of 13.56-MHz class-E amplifier using a high-voltage GaN power-HEMT,” IEEE electron device letters., vol. 27, no. 5, pp. 326-328, May. 2006, doi: 10.1109/LED.2006.873756.
    [2] https://www.st.com/content/st_com/en/about/innovation technology/GaN.html
    [3] R. Yamaguchi, Y. Suzuki, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Reduced current collapse in multi-fingered AlGaN/GaN MOS-HEMTs with dual field plate,” in IEEE International Meeting for Future of Electron Devices., Kansai, Japan, Aug. 2017, doi: 10.1109/IMFEDK.2017.7998058.
    [4] J. Jaya, S. Surapaneni, A. Kumar, S. Ganguly, and D. Saha, “Multi-Finger High Power Gallium Nitride Based High Electron Mobility Transistors,” in International Conference on Electrical and Electronics Engineering (ICEEE)., Mumbai, India, Aug. 2019, doi: 10.1109/ICEEE2019.2019.00046.
    [5] S. Huang, X. Liu, J. Zhang, K. Wei, G. Liu, X. Wang, Y. Zheng, H. Liu, Z. Jin, C. Zhao, C. Liu, S. Liu, S. Yang, J. Zhang, Y. Hao, J. Chen, “High RF performance enhancement-mode Al2O3 AlGaN/GaN MIS-HEMTs fabricated with high-temperature gate-recess technique,” IEEE Electron Device Letters., vol. 36, no. 8, pp. 754-756, Aug. 2015, doi: 10.1109/LED.2015.2445353.
    [6] S. Adak, N. Chand, S.K. Swain, and A. Sarkar, “Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs,” in IEEE Devices for Integrated Circuit (DevIC)., Kalyani, India, Mar. 2019, doi: 10.1109/DEVIC.2019.8783383.
    [7] T.E. Hsieh, E.Y. Chang, Y.Z. Song, Y.C. Lin, H.C. Wang, S.C. Liu, S. Salahuddin, and C.C. Hu, “Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Letters., vol. 35, no. 7, pp. 732-734, Jul. 2014, doi: 10.1109/LED.2014.2321003.
    [8] Y. Zhang, M. Sun, J. Joglekar, and T. Palacios, “High threshold voltage in GaN MOS-HEMTs modulated by fluorine plasma and gate oxide,” in IEEE 71st Device Research Conference., Notre Dame, IN, USA, Jun. 2013, doi: 10.1109/DRC.2013.6633833.
    [9] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Enhancement-mode AlGaN/GaN nanowire channel high electron mobility transistor with fluorine plasma treatment by ICP,” IEEE Electron Device Letters., vol. 38, no.10, pp. 1421-1424, Oct. 2017, doi: 10.1109/LED.2017.2736780.
    [10] H. Chen, M. Wang, and J. Chen, “Self-aligned enhancement-mode AlGaN/GaN HEMTs using 25 keV fluorine ion implantation,” in IEEE 68th Device Research Conference., South Bend, IN, USA, Jun. 2010, doi: 10.1109/DRC.2010.5551879.
    [11] D. Mahajan, and S. Khandelwal, “Impact of p-GaN layer doping on switching performance of enhancement mode GaN devices,” in IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL)., Padua, Italy, Jun. 2017, doi: 10.1109/COMPEL.2018.8460098.
    [12] N. Modolo, S.W. Tang, H.J. Jiang, C.D. Santi, M. Meneghini, and T.L. Wu, “A Novel Physics-Based Approach to Analyze and Model E-Mode p-GaN Power HEMTs,” IEEE Transactions on Electron Devices., pp. 1-6, May. 2020, doi: 10.1109/TED.2020.2992587.
    [13] N.E. Posthuma, S. You, S. Stoffels, H. Liang, M. Zhao and S. Decoutereimec, Leuven, Belgium, “Gate architecture design for enhancement mode p-GaN gate HEMTs for 200 and 650V applications,” in IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)., Chicago, IL, USA, May. 2018, doi: 10.1109/ISPSD.2018.8393634.
    [14] B. Lu, M. Cui, and W. Liu, “The Impact of AlGaN Barrier on Transient V TH Shifts and V TH Hysteresis in Depletion and Enhancement mode AlGaN/GaN MIS-HEMTs,” in IEEE International Conference on IC Design and Technology (ICICDT)., SUZHOU, China, China, Jun. 2019, doi: 10.1109/ICICDT.2019.8790906.
    [15] W. Wayne, and P.C. Sheng, “Handbook of GaN semiconductor materials and devices,” CRC Press, 2017.
    [16] S. C. Liu, G. M. Dai, and E. Y. Chang, “Improved reliability of GaN HEMTs using N2 plasma surface treatment,” in IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits., Hsinchu, Taiwan, Jul. 2015, doi: 10.1109/IPFA.2015.7224420.
    [17] S.C. Liu, B.Y. Chen, Y.C. Lin, T.E. Hsieh, H.C. Wang, and E.Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Letters., vol. 35, no. 10, pp. 1001-1003, Oct. 2014, doi: 10.1109/LED.2014.2345130.
    [18] G. Meneghesso, “Gallium Nitride HEMTs: advantages, opportunities and challenges.” présenté à Giornata IU .NET (2014).
    [19] X. Sun, O. I. Saadat, K. S. Chang, T. Palacios, S. Cui, and T. P. Ma, “Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method,” Applied Physics Letters., vol. 102, no. 10, Mar. 2013, Art. no. 103504, doi: 10.1063/1.4795717.
    [20] T.E. Hsieh, Y.C. Lin, J.T. Liao, W.C. Lan, P.C. Chin, and E.Y. Chang, “Effect of high voltage stress on the DC performance of the Al2O3/AlN GaN metal–insulator–semiconductor high-electron mobility transistor for power applications,” Applied Physics Express., vol. 8, no. 10, Sep. 2015, Art. no. 104102, doi: 10.7567/APEX.8.104102.
    [21] H.Y. Liu, C.S. Lee, F.C. Liao, W.C. Hsu, B.Y. Chou, J.H. Tsai, and H.Y. Lee, “Comparative studies on AlGaN/GaN MOS-HEMTs with stacked La2O3/Al2O3 dielectric structures,” ECS Journal of Solid State Science and Technology., vol. 3, no. 8, p. N115, Jul. 2014, doi: 10.1149/2.0091408jss.
    [22] H.Y. Liu, W.C. Ou, and W.C. Hsu, “Investigation of post oxidation annealing effect on H2O2-Grown-Al2O3/AlGaN/GaN MOSHEMTs,” IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 358-364, Sep. 2016, doi: 10.1109/JEDS.2016.2594293.
    [23] Y. Wei, “Structural Properties of III-Nitride Semiconductors,” Vol. 89. Arizona State University, 2014.
    [24] Cosendey, Gatien. (In, Al) N-based blue microcavity lasers. No. THESIS. EPFL, 2013.
    [25] Kasap, Safa. Springer handbook of electronic and photonic materials. Springer Science & Business Media, 2006.
    [26] T. Wonglakhon and D. Zahn, “Interaction potentials for modelling GaN precipitation and solid state polymorphism,” Journal of Physics: Condensed Matter., vol. 32, no. 20, p. 205401, Feb. 2020.
    [27] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of applied physics., vol. 87, no. 1, pp. 334-344, Jan. 2000, doi: 10.1063/1.371866.
    [28] http://www.ganhemt.com/jish/117.html
    [29] http://www.ganhemt.com/jish/118.html
    [30] https://www.slideshare.net/PojungLin/gan-epitaxy-grown-on-si-substrate
    [31] http://cmnst.ncku.edu.tw/p/405-1006-159877,c17606.php?Lang=zh-tw
    [32] https://highscope.ch.ntu.edu.tw/wordpress/?p=19779
    [33] https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/159/01590330pdf
    [34] J. Zhang, L. He, L. Li, Y. Ni, T. Que, Z. Liu, W. Wang, J. Zheng, Y. Huang, J. Chen, X. Gu, Y. Zhao, L. He, Z. Wu, and Y. Liu, “High-mobility normally OFF Al2O3/AlGaN/GaN MISFET with damage-free recessed-gate structure,” IEEE Electron Device Letters., vol. 39, no. 11, pp. 1720-1723, Nov. 2018, doi: 10.1109/LED.2018.2872637.
    [35] T.E. Hsieh, E.Y. Chang, Y.Z. Song, Y.C. Lin, H.C. Wang, S.C. Liu, S. Salahuddin, and C.C. Hu, “Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Letters., vol. 35, no. 7, pp. 732-734, Jul. 2014, doi: 10.1109/LED.2014.2321003.
    [36] H.K. Chu, Y.H. Wang, “Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Liquid Phase Deposited Aluminum Oxide,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.

    [37] http://www.ndl.org.tw/docs/publication/23_4/pdf/E3.pdf
    [38] S. Levantino, M. Zanuso, and C. Samori, “Suppression of flicker noise upconversion in a 65nm CMOS VCO in the 3.0-to-3.6GHz band,” 2010 IEEE International Solid-State Circuits Conference - (ISSCC)., San Francisco, CA, USA, Feb. 2014, doi: 10.1109/ISSCC.2010.5434054.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE