| 研究生: |
蔡庭嘉 Tsai, Ting-Chia |
|---|---|
| 論文名稱: |
以沉積後退火製程改善氧化鋁金氧半高電子遷移率電晶體之電性表現 Improvement of Electrical Performance of Al2O3 Metal-Oxide-Semiconductor HEMTs by Post Deposition Annealing |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵高電子遷移率電晶體 、三氧化二鋁 、field plate結構 、崩潰電壓 、沉積後退火 |
| 外文關鍵詞: | AlGaN/GaN HEMTs, Al2O3, field plate, breakdown voltage, post deposition annealing |
| 相關次數: | 點閱:151 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
5G時代來臨,氮化鎵因為高能隙、高崩潰電壓、高電子飽和速度等等優點,使它成為半導體界的寵兒。而本實驗所用的氮化鋁鎵/氮化鎵高電子遷移率電晶體因為本身結構所產生的極化現象,讓電子被侷限在氮化鋁鎵與氮化鎵接面處進行二維平面運動,造就高濃度的二維電子氣,這使得HEMT能夠輸出大電流工作。
本實驗成功製作出增強型與空乏型的三氧化二鋁金氧半高電子遷移率電晶體,並利用沉積後退火製成改善三氧化二鋁氧化層的品質,以及運用field plate結構提升崩潰電壓。在增強型方面,改善後在閘極電壓為5V時的最大汲極電流為351mA/mm,最大轉導值為83mS/mm,次臨界擺幅與電流開關比為115mV/decade和1.8 x 108。閘極漏電流為8.75 x 10-7mA/mm,崩潰電壓為210V。而在空乏型方面,改善後在閘極電壓為5V時的最大汲極電流為570mA/mm,最大轉導值為106mS/mm,次臨界擺幅與電流開關比為125mV/decade和4.2 x 108。閘極漏電流為1.21 x 10-4mA/mm,崩潰電壓為173V。
In the upcoming 5G generation, due to many advantages of GaN, such as wide band gap, high breakdown voltage, and high electron saturation velocity, GaN has become the best candidate for RF and power applications. Because of the polarization effects caused by AlGaN/GaN heterostructures, electrons are confined at the interface of AlGaN/GaN, leading to high concentrations of 2DEG, so AlGaN/GaN HEMTs exhibit better current performance than other transistors.
The objective of this thesis as to fabricate E-mode and D-mode Al2O3 MOS-HEMTs. In order to achieve better performance, we improved the quality of the Al2O3 dielectric layers by post deposition annealing and enhanced the breakdown voltage by field plate. In the E-mode HEMTs, the maximum drain current was 351mA/mm at VGS=5V; the maximum transconductance was 83mS/mm; the S.S. and on-off ratio were 115mV/decade and 1.8 x 108, respectively. The gate leakage current was 8.75 x 10-7mA/mm, and the breakdown voltage was 210V. In D-mode HEMTs, the maximum drain current was 570mA/mm at VGS=5V; the maximum transconductance was 106mS/mm; the S.S. and on-off ratio were 125mV/decade and 4.2 x 108, respectively. The gate leakage current was 1.21 x 10-4mA/mm, and the breakdown voltage was 173V.
[1] W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, “Demonstration of 13.56-MHz class-E amplifier using a high-voltage GaN power-HEMT,” IEEE electron device letters., vol. 27, no. 5, pp. 326-328, May. 2006, doi: 10.1109/LED.2006.873756.
[2] https://www.st.com/content/st_com/en/about/innovation technology/GaN.html
[3] R. Yamaguchi, Y. Suzuki, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Reduced current collapse in multi-fingered AlGaN/GaN MOS-HEMTs with dual field plate,” in IEEE International Meeting for Future of Electron Devices., Kansai, Japan, Aug. 2017, doi: 10.1109/IMFEDK.2017.7998058.
[4] J. Jaya, S. Surapaneni, A. Kumar, S. Ganguly, and D. Saha, “Multi-Finger High Power Gallium Nitride Based High Electron Mobility Transistors,” in International Conference on Electrical and Electronics Engineering (ICEEE)., Mumbai, India, Aug. 2019, doi: 10.1109/ICEEE2019.2019.00046.
[5] S. Huang, X. Liu, J. Zhang, K. Wei, G. Liu, X. Wang, Y. Zheng, H. Liu, Z. Jin, C. Zhao, C. Liu, S. Liu, S. Yang, J. Zhang, Y. Hao, J. Chen, “High RF performance enhancement-mode Al2O3 AlGaN/GaN MIS-HEMTs fabricated with high-temperature gate-recess technique,” IEEE Electron Device Letters., vol. 36, no. 8, pp. 754-756, Aug. 2015, doi: 10.1109/LED.2015.2445353.
[6] S. Adak, N. Chand, S.K. Swain, and A. Sarkar, “Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs,” in IEEE Devices for Integrated Circuit (DevIC)., Kalyani, India, Mar. 2019, doi: 10.1109/DEVIC.2019.8783383.
[7] T.E. Hsieh, E.Y. Chang, Y.Z. Song, Y.C. Lin, H.C. Wang, S.C. Liu, S. Salahuddin, and C.C. Hu, “Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Letters., vol. 35, no. 7, pp. 732-734, Jul. 2014, doi: 10.1109/LED.2014.2321003.
[8] Y. Zhang, M. Sun, J. Joglekar, and T. Palacios, “High threshold voltage in GaN MOS-HEMTs modulated by fluorine plasma and gate oxide,” in IEEE 71st Device Research Conference., Notre Dame, IN, USA, Jun. 2013, doi: 10.1109/DRC.2013.6633833.
[9] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Enhancement-mode AlGaN/GaN nanowire channel high electron mobility transistor with fluorine plasma treatment by ICP,” IEEE Electron Device Letters., vol. 38, no.10, pp. 1421-1424, Oct. 2017, doi: 10.1109/LED.2017.2736780.
[10] H. Chen, M. Wang, and J. Chen, “Self-aligned enhancement-mode AlGaN/GaN HEMTs using 25 keV fluorine ion implantation,” in IEEE 68th Device Research Conference., South Bend, IN, USA, Jun. 2010, doi: 10.1109/DRC.2010.5551879.
[11] D. Mahajan, and S. Khandelwal, “Impact of p-GaN layer doping on switching performance of enhancement mode GaN devices,” in IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL)., Padua, Italy, Jun. 2017, doi: 10.1109/COMPEL.2018.8460098.
[12] N. Modolo, S.W. Tang, H.J. Jiang, C.D. Santi, M. Meneghini, and T.L. Wu, “A Novel Physics-Based Approach to Analyze and Model E-Mode p-GaN Power HEMTs,” IEEE Transactions on Electron Devices., pp. 1-6, May. 2020, doi: 10.1109/TED.2020.2992587.
[13] N.E. Posthuma, S. You, S. Stoffels, H. Liang, M. Zhao and S. Decoutereimec, Leuven, Belgium, “Gate architecture design for enhancement mode p-GaN gate HEMTs for 200 and 650V applications,” in IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)., Chicago, IL, USA, May. 2018, doi: 10.1109/ISPSD.2018.8393634.
[14] B. Lu, M. Cui, and W. Liu, “The Impact of AlGaN Barrier on Transient V TH Shifts and V TH Hysteresis in Depletion and Enhancement mode AlGaN/GaN MIS-HEMTs,” in IEEE International Conference on IC Design and Technology (ICICDT)., SUZHOU, China, China, Jun. 2019, doi: 10.1109/ICICDT.2019.8790906.
[15] W. Wayne, and P.C. Sheng, “Handbook of GaN semiconductor materials and devices,” CRC Press, 2017.
[16] S. C. Liu, G. M. Dai, and E. Y. Chang, “Improved reliability of GaN HEMTs using N2 plasma surface treatment,” in IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits., Hsinchu, Taiwan, Jul. 2015, doi: 10.1109/IPFA.2015.7224420.
[17] S.C. Liu, B.Y. Chen, Y.C. Lin, T.E. Hsieh, H.C. Wang, and E.Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Letters., vol. 35, no. 10, pp. 1001-1003, Oct. 2014, doi: 10.1109/LED.2014.2345130.
[18] G. Meneghesso, “Gallium Nitride HEMTs: advantages, opportunities and challenges.” présenté à Giornata IU .NET (2014).
[19] X. Sun, O. I. Saadat, K. S. Chang, T. Palacios, S. Cui, and T. P. Ma, “Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method,” Applied Physics Letters., vol. 102, no. 10, Mar. 2013, Art. no. 103504, doi: 10.1063/1.4795717.
[20] T.E. Hsieh, Y.C. Lin, J.T. Liao, W.C. Lan, P.C. Chin, and E.Y. Chang, “Effect of high voltage stress on the DC performance of the Al2O3/AlN GaN metal–insulator–semiconductor high-electron mobility transistor for power applications,” Applied Physics Express., vol. 8, no. 10, Sep. 2015, Art. no. 104102, doi: 10.7567/APEX.8.104102.
[21] H.Y. Liu, C.S. Lee, F.C. Liao, W.C. Hsu, B.Y. Chou, J.H. Tsai, and H.Y. Lee, “Comparative studies on AlGaN/GaN MOS-HEMTs with stacked La2O3/Al2O3 dielectric structures,” ECS Journal of Solid State Science and Technology., vol. 3, no. 8, p. N115, Jul. 2014, doi: 10.1149/2.0091408jss.
[22] H.Y. Liu, W.C. Ou, and W.C. Hsu, “Investigation of post oxidation annealing effect on H2O2-Grown-Al2O3/AlGaN/GaN MOSHEMTs,” IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 358-364, Sep. 2016, doi: 10.1109/JEDS.2016.2594293.
[23] Y. Wei, “Structural Properties of III-Nitride Semiconductors,” Vol. 89. Arizona State University, 2014.
[24] Cosendey, Gatien. (In, Al) N-based blue microcavity lasers. No. THESIS. EPFL, 2013.
[25] Kasap, Safa. Springer handbook of electronic and photonic materials. Springer Science & Business Media, 2006.
[26] T. Wonglakhon and D. Zahn, “Interaction potentials for modelling GaN precipitation and solid state polymorphism,” Journal of Physics: Condensed Matter., vol. 32, no. 20, p. 205401, Feb. 2020.
[27] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of applied physics., vol. 87, no. 1, pp. 334-344, Jan. 2000, doi: 10.1063/1.371866.
[28] http://www.ganhemt.com/jish/117.html
[29] http://www.ganhemt.com/jish/118.html
[30] https://www.slideshare.net/PojungLin/gan-epitaxy-grown-on-si-substrate
[31] http://cmnst.ncku.edu.tw/p/405-1006-159877,c17606.php?Lang=zh-tw
[32] https://highscope.ch.ntu.edu.tw/wordpress/?p=19779
[33] https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/159/01590330pdf
[34] J. Zhang, L. He, L. Li, Y. Ni, T. Que, Z. Liu, W. Wang, J. Zheng, Y. Huang, J. Chen, X. Gu, Y. Zhao, L. He, Z. Wu, and Y. Liu, “High-mobility normally OFF Al2O3/AlGaN/GaN MISFET with damage-free recessed-gate structure,” IEEE Electron Device Letters., vol. 39, no. 11, pp. 1720-1723, Nov. 2018, doi: 10.1109/LED.2018.2872637.
[35] T.E. Hsieh, E.Y. Chang, Y.Z. Song, Y.C. Lin, H.C. Wang, S.C. Liu, S. Salahuddin, and C.C. Hu, “Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Letters., vol. 35, no. 7, pp. 732-734, Jul. 2014, doi: 10.1109/LED.2014.2321003.
[36] H.K. Chu, Y.H. Wang, “Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Liquid Phase Deposited Aluminum Oxide,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[37] http://www.ndl.org.tw/docs/publication/23_4/pdf/E3.pdf
[38] S. Levantino, M. Zanuso, and C. Samori, “Suppression of flicker noise upconversion in a 65nm CMOS VCO in the 3.0-to-3.6GHz band,” 2010 IEEE International Solid-State Circuits Conference - (ISSCC)., San Francisco, CA, USA, Feb. 2014, doi: 10.1109/ISSCC.2010.5434054.