| 研究生: |
裴梧軒 PEI, Wu-Hsuan |
|---|---|
| 論文名稱: |
利用濕蝕刻技術製備聚二甲基矽氧烷微柱陣列以形成超疏水表面與微針結構 Fabrication of Superhydrophobic Surface and Microneedles by Wet Etching of Polydimethylsiloxane Micropillars Array |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | PDMS 、微柱陣列 、超疏水表面 、卡西狀態 、微針結構 |
| 外文關鍵詞: | Polydimethylsiloxane(PDMS), micropillar arrays, superhydrophobic surface, Cassie State, Microneedles |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,超疏水表面的研究備受關注。透過在材料表面製備微柱陣列,分析其靜態接觸角或傾斜角的變化,並調整特定參數,就可改變表面的親疏水特性,也了解水珠在不同情況的受力情形與最終狀態。本研究利用微影技術製作出不同尺寸的模具,並透過PDMS翻模與蝕刻製備出十到百微米尺度超疏水表面。藉由改變微柱的間隙、高度和半徑等參數,觀察蝕刻時間的不同對靜態接觸角的影響。我們發現隨著蝕刻時間的增加,圓柱陣列的間距隨之提升,接觸角也跟著提升。當間距與直徑比值大於1.5時,表面更達到超疏水的性質。此外,將實驗值與不同濕潤模型的理論值進行比較後,發現趨勢與卡西狀態之理論值接近,且實驗結果皆符合文獻上所提出之理論。除此之外,間距與直徑之比值對於滑動角的結果也有關聯,隨著間距的提升,滑動角有逐步下降的趨勢存在。我們亦研究使用不同有機溶劑擔任PDMS蝕刻液的溶劑,比較不同溶劑對於蝕刻速率還有對於表面粗糙度的影響。此外,我們利用 CNC 微鑽技術製作出百微米等級的陣列模具,在PDMS 翻模後分別使用丙酮與 NMP 作為 PDMS 蝕刻液的溶劑,在無攪拌條件下探討是否會形成微針結構;在有攪拌條件下探討是否會維持圓柱結構,並進一步比較蝕刻速率對表面粗糙度與結構之影響。
Superhydrophobic surfaces have attracted significant attention due to their potential applications in self-cleaning, anti-fouling, and water-repellent coatings. This study employed photolithography techniques to fabricate molds of various dimensions, followed by PDMS casting and etching processes to create superhydrophobic surfaces at the scale of tens to hundreds of micrometers. By adjusting parameters such as the spacing, height, and radius of micropillars, the influence of different etching durations on static contact angles was investigated. As the etching time increased, the spacing between the pillars expanded, leading to an enhancement in contact angles. When the ratio of spacing to diameter exceeded 1.5, the surfaces exhibited superhydrophobic properties. Furthermore, by comparing the experimental results with theoretical predictions from various wetting models, we observed a close alignment with the theoretical values of the Cassie state. In addition, the ratio of spacing to diameter was also found to correlate with sliding angle measurements; specifically, the sliding angle progressively decreased with increasing spacing. We also examined the use of different organic solvents as the etching medium for PDMS, comparing their effects on etching rates and surface roughness. Additionally, an array mold with microscale features (hundreds of micrometers) was fabricated using CNC micro-drilling. Acetone and NMP were respectively used as solvents in the PDMS etching solution to investigate whether microneedle structures would form under non-stirring conditions and to compare how surface roughness and etching rate influence the formation of microneedle structures.
1. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 202(1): p. 1-8. (1997)
2. Öner, D. and T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 16(20): p. 7777-7782. (2000)
3. McHale, G., N. Shirtcliffe and M. Newton, Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir. 20(23): p. 10146-10149. (2004)
4. Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London. 95: p. 65-87. (1805)
5. Overton, J., P. Kinnell, S. Lawes and S. Ratchev, High precision self-alignment using liquid surface tension for additively manufactured micro components. Precision Engineering. 40: p. 230-240. (2015)
6. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & engineering chemistry. 28(8): p. 988-994. (1936)
7. Wenzel, R.N., Surface roughness and contact angle. The Journal of Physical Chemistry. 53(9): p. 1466-1467. (1949)
8. Nakajima, A., K. Hashimoto and T. Watanabe, Recent studies on super-hydrophobic films. Monatshefte für Chemie/Chemical Monthly. 132(1): p. 31-41. (2001)
9. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society. 40: p. 546-551. (1944)
10. Herminghaus, S., Roughness-induced non-wetting. Europhysics Letters. 52(2): p. 165. (2000)
11. Wang, S. and L. Jiang, Definition of superhydrophobic states. Advanced materials. 19(21): p. 3423-3424. (2007)
12. Liu, M., Y. Zheng, J. Zhai and L. Jiang, Bioinspired super-antiwetting interfaces with special liquid− solid adhesion. Accounts of chemical research. 43(3): p. 368-377. (2010)
13. Feng, X. and L. Jiang, Design and creation of superwetting/antiwetting surfaces. Advanced Materials. 18(23): p. 3063-3078. (2006)
14. Zhu, H., Y. Huang, X. Lou and F. Xia, Bioinspired superwetting surfaces for biosensing. View. 2(1): p. 20200053. (2021)
15. He, B., N.A. Patankar and J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir. 19(12): p. 4999-5003. (2003)
16. Yoshimitsu, Z., A. Nakajima, T. Watanabe and K. Hashimoto, Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir. 18(15): p. 5818-5822. (2002)
17. Jung, Y.C. and B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Materialia. 57(12): p. 1057-1060. (2007)
18. Patankar, N.A., Transition between superhydrophobic states on rough surfaces. Langmuir. 20(17): p. 7097-7102. (2004)
19. Reyssat, M., J.M. Yeomans and D. Quéré, Impalement of fakir drops. Europhysics Letters. 81(2): p. 26006. (2007)
20. Bhushan, B. and Y.C. Jung, Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy. 107(10-11): p. 1033-1041. (2007)
21. Smyth, K., et al. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis. in 2010 12th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems. IEEE. p. 1-8. (2010)
22. Ma, M. and R.M. Hill, Superhydrophobic surfaces. Current opinion in colloid & interface science. 11(4): p. 193-202. (2006)
23. Qu, M., et al., Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology. 19(5): p. 055707. (2008)
24. Cheng, Z., J. Gao and L. Jiang, Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir. 26(11): p. 8233-8238. (2010)
25. Zhang, Y., X. Zhu and Y. Liu, Fabrication of durable superhydrophobic surface through silica-dissolution-assisted etching template approach. Surface Engineering. 37(3): p. 318-324. (2021)
26. Greiner, A. and J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition. 46(30): p. 5670-5703. (2007)
27. Lim, J.-M., et al., Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir. 23(15): p. 7981-7989. (2007)
28. Zhu, Y., et al., Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials. 16(4): p. 568-574. (2006)
29. Sarkar, M.K., K. Bal, F. He and J. Fan, Design of an outstanding super-hydrophobic surface by electro-spinning. Applied surface science. 257(15): p. 7003-7009. (2011)
30. Kim, T., et al., Recyclable Superhydrophobic Surface Prepared via Electrospinning and Electrospraying Using Waste Polyethylene Terephthalate for Self-Cleaning Applications. Polymers. 15(18): p. 3810. (2023)
31. Yang, S., et al., Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol–gel process. Chemistry of Materials. 20(4): p. 1233-1235. (2008)
32. Fan, Y., C. Li, Z. Chen and H. Chen, Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties. Applied Surface Science. 258(17): p. 6531-6536. (2012)
33. Ghodrati, M., M. Mousavi-Kamazani and Z. Bahrami, Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol–gel method for glass surfaces. Scientific Reports. 13(1): p. 548. (2023)
34. Tsai, H.-J. and Y.-L. Lee, Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir. 23(25): p. 12687-12692. (2007)
35. Kim, Y.H., et al., Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films. ACS nano. 6(2): p. 1082-1093. (2012)
36. Li, Y., L. Li and J. Sun, Bioinspired self‐healing superhydrophobic coatings. Angewandte Chemie International Edition. 35(122): p. 6265-6269. (2010)
37. Peng, S., X. Yang, D. Tian and W. Deng, Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure. ACS applied materials & interfaces. 6(17): p. 15188-15197. (2014)
38. Long, M., et al., Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane. Journal of colloid and interface science. 508: p. 18-27. (2017)
39. Weng, Z., et al., Anticorrosive and Superhydrophobic Surface on Ti–6Al–4V Through One-Step Anodic Etching. Nanomanufacturing and Metrology. 7(1): p. 17. (2024)
40. Krupenkin, T., J.A. Taylor, P. Kolodner and M. Hodes, Electrically tunable superhydrophobic nanostructured surfaces. Bell Labs Technical Journal. 10(3): p. 161-170. (2005)
41. Marquez-Velasco, J., M.-E. Vlachopoulou, A. Tserepi and E. Gogolides, Stable superhydrophobic surfaces induced by dual-scale topography on SU-8. Microelectronic engineering. 87(5-8): p. 782-785. (2010)
42. Kwon, Y., N. Patankar, J. Choi and J. Lee, Design of surface hierarchy for extreme hydrophobicity. Langmuir. 25(11): p. 6129-6136. (2009)
43. D’urso, B., J. Simpson and M. Kalyanaraman, Emergence of superhydrophobic behavior on vertically aligned nanocone arrays. Applied physics letters. 90(4): p. 044102. (2007)
44. D'Urso, B., J.T. Simpson and M. Kalyanaraman, Nanocone array glass. Journal of Micromechanics and Microengineering. 17(4): p. 717. (2007)
45. Yin, Y., et al., Rapid fabrication of superhydrophobic and transparent surfaces by using a laser-induced deep etching process. Optics Express. 32(20): p. 35321-35330. (2024)
46. Tuteja, A., et al., Designing superoleophobic surfaces. Science. 318(5856): p. 1618-1622. (2007)
47. Ahuja, A., et al., Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir. 24(1): p. 9-14. (2008)
48. Kim, S., E. Cheung and M. Sitti, Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. Langmuir. 25(13): p. 7196-7199. (2009)
49. Li, Z., Q. Wan, J. Wang and G. Wang, Fabrication of nanoscale T-shaped reentrant structures and its hydrophobic analysis. Scientific Reports. 13(1): p. 21939. (2023)
50. Grigoryev, A., et al., Superomniphobic magnetic microtextures with remote wetting control. Journal of the American Chemical Society. 134(31): p. 12916-12919. (2012)
51. Liu, T.L. and C.-J.C. Kim, Turning a surface superrepellent even to completely wetting liquids. Science. 346(6213): p. 1096-1100. (2014)
52. Cortese, B., et al., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir. 24(6): p. 2712-2718. (2008)
53. Lee, S.E., et al., Flexible Superhydrophobic Polymeric Surfaces with Micro‐/Nanohybrid Structures Using Black Silicon. Macromolecular Materials and Engineering. 298(3): p. 311-317. (2013)
54. Migliaccio, C.P. and N. Lazarus, Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting. Applied Surface Science. 353: p. 269-274. (2015)
55. Schultz, C.W., C.L. Ng and H.-Z. Yu, Superhydrophobic polydimethylsiloxane via nanocontact molding of solvent crystallized polycarbonate: Optimized fabrication, mechanistic investigation, and application potential. ACS applied materials & interfaces. 12(2): p. 3161-3170. (2019)
56. Im, M., et al., A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter. 6(7): p. 1401-1404. (2010)
57. Feng, L., et al., Petal effect: a superhydrophobic state with high adhesive force. Langmuir. 24(8): p. 4114-4119. (2008)
58. Stanton, M.M., et al., Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. Journal of colloid and interface science. 367(1): p. 502-508. (2012)
59. Jiale, Y., et al., Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir. 29(10): p. 3274-3279. (2013)
60. Zhang, J. and S. Seeger, Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angewandte Chemie-International Edition. 50(29): p. 6652-6656. (2011)
61. Kang, S.M., et al., Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter. 8(33): p. 8563-8568. (2012)
62. Xue, C.-H., X. Bai and S.-T. Jia, Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine. Scientific reports. 6(1): p. 27262. (2016)
63. Deng, Y.-L. and Y.-J. Juang, Polydimethyl siloxane wet etching for three dimensional fabrication of microneedle array and high-aspect-ratio micropillars. Biomicrofluidics. 8(2). (2014)
64. Kusumaatmaja, H., M. Blow, A. Dupuis and J. Yeomans, The collapse transition on superhydrophobic surfaces. Europhysics Letters. 81(3): p. 36003. (2008)
65. Kleiman, M., K.A. Ryu and A.P. Esser‐Kahn, Determination of factors influencing the wet etching of polydimethylsiloxane using tetra‐n‐butylammonium fluoride. Macromolecular Chemistry and Physics. 217(2): p. 284-291. (2016)