簡易檢索 / 詳目顯示

研究生: 張雅婷
Chang, Ya-ting
論文名稱: 皮質酮訊息傳遞路徑對運動所誘發的齒迴區神經新生現象的影響
The effect of corticosterone/MR signaling on exercise-induced neurogenesis in dentate area
指導教授: 郭余民
Kuo, Yu-min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 49
中文關鍵詞: 神經新生皮質酮
外文關鍵詞: corticosterone, neurogenesis
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在成年哺乳動物腦中,神經新生的現象發生在兩個腦區:側腦室旁區(subventricular zone)與海馬迴的齒迴內側區(subgranular zone)。運動已知會增加齒迴區神經新生的數目,但其中的機制卻尚未被解開。腎上腺皮質所分泌的糖皮質酮(在囓齒類為皮質酮)可直接作用在中樞神經系統,並且會影響神經新生。又因為運動已知會影響皮質酮的分泌,所以我假設皮質酮參與運動所導致的齒迴區神經增生現象。由於跑步機運動能有效的控制運動的強度與時間長短,因此,我採取跑步機運動的模式來探討皮質酮是否參與運動所導致C57BL/6公鼠齒迴區神經增生的現象。結果發現小鼠在5週跑步機運動後,血清皮質酮的濃度有短暫上升的現象。而運動對皮質酮兩個接受器【糖皮質酮接受器(glucocorticoid receptor, GR)與礦物皮質酮(mineralcorticoid receptor, MR)】的表現量,則有不同的影響:其中GR的表現量沒有太大改變,但MR卻被向下調控。據此,我將運動導致神經增生的成因分成兩方面檢測:(1)短暫的皮質酮上升,與(2)MR的向下調控。首先,利用單一皮質酮針劑注射,並求得最佳模擬運動後皮質酮上升的劑量為4mg/kg。接著,以每天腹腔注射皮質酮(4mg/kg)的方式,持續三週模擬運動後皮質酮上升的現象。結果顯示三週皮質酮的注射,並不會改變齒迴區的神經前驅細胞數目。至於海馬迴中會受到運動而改變的brain-derived neurotrophic factor (BDNF)和MR的蛋白質濃度,也無變化產生。這些結果表示血液中短暫皮質酮上升現象並不是運動導致神經新生的主因之一。在檢驗成因的第二方面,我選擇以抑制MR的方式來仿效在運動過程中MR向下調控的現象。持續三週在動物運動前90分鐘施打專一性MR的抑制劑(Spironolactone, 100mg/kg),明顯的促進運動所導致的齒迴區神經前驅細胞數目,但不影響BDNF的表現。進一步的檢驗發現,施打MR抑制劑並不改變運動所導致的新生細胞數,但卻增加了未成熟的神經細胞。因此本研究的結論指出運動所導致的海馬迴神經新生現象,部分原因是來自於抑制皮質酮/MR的訊息傳遞路徑使得分化趨向未成熟神經細胞,而此路徑與BDNF的表現量無關。

    Adult mammalian neurogenesis has been well accepted in two brain areas: subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampal dentate area. Physical exercise is known to enhance neurogenesis, although the underlying mechanism remains unclear. Glucocorticoids (corticosterone in rodent), secreted by adrenal cortex, is known to influence neurogenesis. As serum corticosterone is affected by physical exercise, an involvement of corticosterone in exercise-induced neurogenesis is hypothesized. The treadmill running (TR) paradigm was adopted to accurately define the intensity and duration of exercise. The result showed that 5 weeks TR increased transiently serum corticosterone levels; whereas the level of hippocampal mineralcorticoid receptor (MR), one of two corticosterone receptors, was down-regulated. The concentration of the other corticosterone receptor, glucocorticoid receptor (GR), remained unaltered. Accordingly, the TR-induced neurogenesis in dentate area were evaluated at two different settings: (1) transient elevation of corticosterone and (2) down-regulation of MR. The result indicated that single intraperitoneal (i.p.) corticosterone injection of 4mg/kg gave a serum corticosterone concentration resembling the TR-induced corticosterone elevation. Therefore, the effect of transient elevation of corticosterone on the neuronal progenitor proliferation in dentate area was investigated in mice that received daily corticosterone (4mg/kg, i.p.) injection for three weeks. The results indicated that such treatment did not change the number of neuronal progenitor in dentate area. Nor did the expression levels of hippocampal BDNF and MR, both were affected by TR, changed. These findings suggested that transient corticosterone elevation did not contribute to the TR-induced proliferation of neuronal progenitors in dentate area. To examine whether the down-regulation of MR is involved in the TR-induced neurogenesis, animals were treated with a selective MR antagonist, spironolactone (100mg/kg/day) for three weeks. The results showed that spironolactone significantly enhanced TR-induced progenitor cell number in the dentate area, while it did not change the level of hippocampal BDNF. Further studies showed that the MR antagonist did not change the number of cell proliferation but increased that of immature neuron. In conclusion, these results suggest that the phenomenon of TR-induced neurogenesis in the dentate area is partially due to the inhibition of corticosterone/MR signaling which subsequently enhances the neuronal differentiation and shows no correlation with the BDNF expression.

    CONTENTS Page ABSTRACT IN CHINESE…………………………………………….I ABSTRACT……………………………………………………………..II ACKNOWEDGE………………………………………………………..IV CONTENTS……………………………………………………………..V LIST OF TABLES……………………………………………………….VI LIST OF FIGURES……………………………………………………...VII INTRODUCTION……………………………………………………….1 HYPOTHESIS AND SPECIFIC AIMS………………………………..8 EXPERIMENTAL DESIGN……………………………………………9 MATERIALS AND METHODS………………………………………...10 RESULTS………………………………………………………………26 DISCUSSION…………………………………………………………29 REFERENCES…………………………………………………………32 FIGURES……………………………………………………………39

    References
    Abraham I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, Luiten PG. Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. Journal of neuroendocrinology 2000;12(6):486-494.
    Abraham I, Veenema AH, Nyakas C, Harkany T, Bohus BG, Luiten PG. Effect of corticosterone and adrenalectomy on NMDA-induced cholinergic cell death in rat magnocellular nucleus basalis. Journal of neuroendocrinology 1997;9(9):713-720.
    Abraham IM, Harkany T, Horvath KM, Luiten PG. Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? Journal of neuroendocrinology 2001;13(9):749-760.
    Altman J. Are new neurons formed in the brains of adult mammals? Science (New York, NY 1962;135:1127-1128.
    Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of comparative neurology 1965;124(3):319-335.
    Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocrine reviews 1986;7(4):351-378.
    Arriza JL, Simerly RB, Swanson LW, Evans RM. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1988;1(9):887-900.
    Avital A, Segal M, Richter-Levin G. Contrasting roles of corticosteroid receptors in hippocampal plasticity. J Neurosci 2006;26(36):9130-9134.
    Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001;21(17):6718-6731.
    Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America 1990;87(14):5568-5572.
    Brochu M, Poehlman ET, Ades PA. Obesity, body fat distribution, and coronary artery disease. Journal of cardiopulmonary rehabilitation 2000;20(2):96-108.
    Cameron HA, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994;61(2):203-209.
    Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nature neuroscience 1999;2(10):894-897.
    Cameron HA, Woolley CS, Gould E. Adrenal steroid receptor immunoreactivity in cells born in the adult rat dentate gyrus. Brain research 1993;611(2):342-346.
    Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000;20(8):2926-2933.
    Carro E, Trejo JL, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 2001;21(15):5678-5684.
    Chao HM, Ma LY, McEwen BS, Sakai RR. Regulation of glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acids by selective agonists in the rat hippocampus. Endocrinology 1998;139(4):1810-1814.
    Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in neurosciences 2002;25(6):295-301.
    Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science (New York, NY 2007;315(5816):1243-1249.
    Davies CT, Few JD. Effects of exercise on adrenocortical function. Journal of applied physiology: respiratory, environmental and exercise physiology 1973;35(6):887-891.
    Droste SK, Gesing A, Ulbricht S, Muller MB, Linthorst AC, Reul JM. Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis. Endocrinology 2003;144(7):3012-3023.
    Duclos M, Gouarne C, Bonnemaison D. Acute and chronic effects of exercise on tissue sensitivity to glucocorticoids. Journal of applied physiology: respiratory, environmental and exercise physiology 2003;94(3):869-875.
    Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001;25(6):836-844.
    Elder GA, De Gasperi R, Gama Sosa MA. Research update: neurogenesis in adult brain and neuropsychiatric disorders. The Mount Sinai journal of medicine, New York 2006;73(7):931-940.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature medicine 1998;4(11):1313-1317.
    Escorihuela RM, Tobena A, Fernandez-Teruel A. Environmental enrichment and postnatal handling prevent spatial learning deficits in aged hypoemotional (Roman high-avoidance) and hyperemotional (Roman low-avoidance) rats. Learning & memory (Cold Spring Harbor, NY 1995;2(1):40-48.
    Fellmann N, Bedu M, Boudet G, Mage M, Sagnol M, Pequignot JM, Claustrat B, Brun J, Peyrin L, Coudert J. Inter-relationships between pituitary-adrenal hormones and catecholamines during a 6-day Nordic ski race. European journal of applied physiology and occupational physiology 1992;64(3):258-265.
    Filaire E, Duche P, Lac G. Effects of amount of training on the saliva concentrations of cortisol, dehydroepiandrosterone and on the dehydroepiandrosterone: cortisol concentration ratio in women over 16 weeks of training. European journal of applied physiology and occupational physiology 1998;78(5):466-471.
    Fischer AK, von Rosenstiel P, Fuchs E, Goula D, Almeida OF, Czeh B. The prototypic mineralocorticoid receptor agonist aldosterone influences neurogenesis in the dentate gyrus of the adrenalectomized rat. Brain research 2002;947(2):290-293.
    Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 2003;23(28):9357-9366.
    Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension 2005;46(6):1227-1235.
    Gage FH. Mammalian neural stem cells. Science (New York, NY 2000;287(5457):1433-1438.
    Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging cell 2004;3(6):363-371.
    Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Developmental biology 2003;255(1):164-177.
    Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of neurophysiology 2002;88(5):2187-2195.
    Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992;12(9):3642-3650.
    Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proceedings of the National Academy of Sciences of the United States of America 1998;95(6):3168-3171.
    Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996;17(4):595-606.
    Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells. The Journal of comparative neurology 1999;413(1):146-154.
    Holmes MC, French KL, Seckl JR. Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. J Neurosci 1997;17(11):4056-4065.
    Jacobsen JP, Mork A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain research 2006;1110(1):221-225.
    Kalman BA, Spencer RL. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain. Endocrinology 2002;143(11):4184-4195.
    Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science (New York, NY 1977;197(4308):1092-1094.
    Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocrine reviews 1984;5(1):1-24.
    Kim HB, Jang MH, Shin MC, Lim BV, Kim YP, Kim KJ, Kim EH, Kim CJ. Treadmill exercise increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes. Journal of diabetes and its complications 2003;17(1):29-33.
    Kraemer WJ, Fleck SJ, Callister R, Shealy M, Dudley GA, Maresh CM, Marchitelli L, Cruthirds C, Murray T, Falkel JE. Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Medicine and science in sports and exercise 1989;21(2):146-153.
    Kretz O, Schmid W, Berger S, Gass P. The mineralocorticoid receptor expression in the mouse CNS is conserved during development. Neuroreport 2001;12(6):1133-1137.
    Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996;16(6):2027-2033.
    Kwak SP, Patel PD, Thompson RC, Akil H, Watson SJ. 5'-Heterogeneity of the mineralocorticoid receptor messenger ribonucleic acid: differential expression and regulation of splice variants within the rat hippocampus. Endocrinology 1993;133(5):2344-2350.
    Laplagne DA, Kamienkowski JE, Esposito MS, Piatti VC, Zhao C, Gage FH, Schinder AF. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. The European journal of neuroscience 2007;25(10):2973-2981.
    Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of neurology 2001;58(3):498-504.
    Lebovitz HE. Type 2 diabetes: an overview. Clinical chemistry 1999;45(8 Pt 2):1339-1345.
    Levi F. Cancer prevention: epidemiology and perspectives. Eur J Cancer 1999;35(7):1046-1058.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88(3):323-331.
    Li J, Ding YH, Rafols JA, Lai Q, McAllister JP, 2nd, Ding Y. Increased astrocyte proliferation in rats after running exercise. Neuroscience letters 2005;386(3):160-164.
    Luger A, Deuster PA, Gold PW, Loriaux DL, Chrousos GP. Hormonal responses to the stress of exercise. Advances in experimental medicine and biology 1988;245:273-280.
    Mattson MP. Neuroprotective signaling and the aging brain: take away my food and let me run. Brain research 2000;886(1-2):47-53.
    McEwen BS, De Kloet ER, Rostene W. Adrenal steroid receptors and actions in the nervous system. Physiological reviews 1986;66(4):1121-1188.
    Montaron MF, Piazza PV, Aurousseau C, Urani A, Le Moal M, Abrous DN. Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. The European journal of neuroscience 2003;18(11):3105-3111.
    Park E, Chan O, Li Q, Kiraly M, Matthews SG, Vranic M, Riddell MC. Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated. American journal of physiology 2005;289(5):R1360-1371.
    Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 2001;21(17):6706-6717.
    Quadrilatero J, Hoffman-Goetz L. In vivo corticosterone administration at levels occurring with intense exercise does not induce intestinal lymphocyte apoptosis in mice. Journal of neuroimmunology 2005;162(1-2):137-148.
    Ra SM, Kim H, Jang MH, Shin MC, Lee TH, Lim BV, Kim CJ, Kim EH, Kim KM, Kim SS. Treadmill running and swimming increase cell proliferation in the hippocampal dentate gyrus of rats. Neuroscience letters 2002;333(2):123-126.
    Ramirez-Amaya V, Marrone DF, Gage FH, Worley PF, Barnes CA. Integration of new neurons into functional neural networks. J Neurosci 2006;26(47):12237-12241.
    Ratka A, Sutanto W, Bloemers M, de Kloet ER. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology 1989;50(2):117-123.
    Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985;117(6):2505-2511.
    Schabitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, Kuhn HG. Intravenous Brain-Derived Neurotrophic Factor Enhances Poststroke Sensorimotor Recovery and Stimulates Neurogenesis. Stroke 2007.
    Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experimental neurology 2005;192(2):348-356.
    Schmiedek P, Sadee W, Baethmann A. Cerebral uptake of a 3 H-labelled spirolactone compound in the dog. European journal of pharmacology 1973;21(2):238-241.
    Schreiber SS, Sakhi S, Dugich-Djordjevic MM, Nichols NR. Tumor suppressor p53 induction and DNA damage in hippocampal granule cells after adrenalectomy. Experimental neurology 1994;130(2):368-376.
    Silverman HG, Mazzeo RS. Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages. The journals of gerontology 1996;51(1):B30-37.
    Sloviter RS, Dean E, Neubort S. Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. The Journal of comparative neurology 1993;330(3):337-351.
    Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S. Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science (New York, NY 1989;243(4890):535-538.
    Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS, Nishijima T. BDNF induction with mild exercise in the rat hippocampus. Biochemical and biophysical research communications 2007;358(4):961-967.
    Tharp GD. The role of glucocorticoids in exercise. Medicine and science in sports 1975;7(1):6-11.
    Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 2001;21(5):1628-1634.
    van Haarst AD, Oitzl MS, de Kloet ER. Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochemical research 1997;22(11):1323-1328.
    van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America 1999a;96(23):13427-13431.
    van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience 1999b;2(3):266-270.
    Vaynman S, Ying Z, Gomez-Pinilla F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of neuroscience research 2004a;76(3):356-362.
    Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. The European journal of neuroscience 2004b;20(10):2580-2590.
    von Bohlen Und Halbach O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 2007.
    Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Progress in neurobiology 1993;40(5):573-629.
    Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 1995;376(6538):331-333.
    Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences 1998;11(4):234-245.

    下載圖示
    2010-07-26公開
    QR CODE