| 研究生: |
朱只耕 Chu, Chih-Ken |
|---|---|
| 論文名稱: |
阿侖磷酸修飾光聚合甲基丙烯酸羥乙酯水膠用於慢性傷口敷料之研究 Study of Photopolymerized 2-Hydroxyethyl methacrylate (HEMA) Based Hydrogel with Alendronate Functionality for Chronic Wound Dressing Application |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 水膠 、慢性傷口 、HEMA 、MMP活性抑制 、阿侖磷酸 、傷口敷料 |
| 外文關鍵詞: | HEMA, alendronate, hydrogel, chronic wound dressing, MMPs activity inhibition |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今社會隨著老年人口、肥胖率逐漸升高,高血糖、高血脂、高血壓、糖尿病好發率也不斷提升,這些都是慢性傷口的好發族群,如何面對慢性傷口成為未來必須面對的課題,因此本實驗選擇以水膠敷料為出發點,預期可以做出針對慢性傷口的傷口敷料。
本實驗選擇選用HEMA (2-hydroxyethyl methacrylate)和PEGDA (Poly(ethylene glycol) diacrylate)作為水膠敷料的基材和交聯劑,他們良好的生物相容性可以讓水膠敷料在接觸傷口時不影響正常的細胞運作。而在過去的研究中證實了慢性傷口中的基質金屬蛋白酶(Matrix metalloproteinase, MMP)的濃度為普通急性傷口的兩倍,此現象是影響慢性傷口癒合緩慢的重要因素之一,因此本實驗希望透過導入可以抑制MMPs活性的阿侖磷酸官能基進入水膠敷料之中,來達到治癒慢性傷口的效果。
本實驗先合成了帶有雙鍵和阿侖磷酸官能基的阿侖磷酸單體,並透過光聚合的方式將HEMA、PEGDA和阿侖磷酸單體共聚成水膠敷料,並透過SEM、膨潤性質測試、機械性質測試、MMPs活性抑制測試和細胞毒性測試來優化比例的調配,期望製作出擁有可以保持濕潤、柔軟但具韌性、具MMPs活性抑制能力並不具細胞毒性的水膠敷料。
綜合以上實驗結果分析,阿侖磷酸的導入會賦與水膠MMPs活性抑制能力並且增加膨潤性質但同時機械性質會流失,此外阿侖磷酸的導入會使得水膠具有些許細胞毒性,此問題可以由增加交聯劑的比例解決。最後H95A3不僅擁有良好的MMPs活性抑制能力也具備柔軟、具韌性、高生物相容性的特性,在所有比例中最適合做為後續針對慢性傷口水膠敷料研究的參考。
In modern society, with the gradual increase of the elderly population and obesity rate, the rate of high blood sugar, hyperlipidemia, high blood pressure, and diabetes is also increasing. These are the high-risk groups to suffer from chronic wounds. Therefore, How to deal with chronic wounds has become a must in the future.
Here, HEMA (2-hydroxyethyl methacrylate) and PEGDA (Poly(ethylene glycol) diacrylate) were selected as the base material and cross-linker of the hydrogel wound dressing due to their good biocompatibility. According to references, introduce the alendronate functional group that can inhibit the activity of MMPs into the hydrogel dressing can achieve the effect of healing chronic wounds. Therefore, we combine HEMA, PEGDA and self-synthesis alendronate monomer with 9 ratios. Then, the swelling property test, mechanical property test, structure analysis, MMPs activity inhibition test and cytotoxicity test were be done to above 9 ratios hydrogel dressing to analyze the influence of the content of the crosslinker and alendronate monomer on the properties of the hydrogel dressing.
According to the results, the H95A3 group performed well in all tests. Although the inhibitory ability of MMPs activity is not as good as that of GA10X made by Rayment et al.[1], it meets the required characteristics of wound dressings in other basic properties, and is considered the most suitable ratio in this study.
For ideal wound dressing, antibacterial ability is also an important indicator. In the future, antibacterial drugs can be added on the basis of this ratio of H95A3 to further meet the needs of chronic wound dressings.
1. Rayment, E.A., et al., Attenuation of protease activity in chronic wound fluid with bisphosphonate-functionalised hydrogels. Biomaterials, 2008. 29(12): p. 1785-95.
2. Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings - a review. Biomedicine (Taipei), 2015. 5(4): p. 22.
3. Achilli, C., A. Ciana, and G. Minetti, Amyloid-beta (25-35) peptide induces the release of pro-matrix metalloprotease 9 (pro-MMP-9) from human neutrophils. Molecular and cellular biochemistry, 2014. 397.
4. Ghorai, A., et al., PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells. Radiation Oncology (London, England), 2016. 11.
5. Pushpakumar, S., et al., Matrix Metalloproteinase Inhibition Mitigates Renovascular Remodeling in Salt-Sensitive Hypertension. Physiological reports, 2013. 1: p. e00063.
6. Guo, S. and L.A. Dipietro, Factors affecting wound healing. J Dent Res, 2010. 89(3): p. 219-29.
7. Caley, M.P., V.L. Martins, and E.A. O'Toole, Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle), 2015. 4(4): p. 225-234.
8. Teronen, O., et al., MMP inhibition and downregulation by bisphosphonates. Ann N Y Acad Sci, 1999. 878(1): p. 453-65.
9. Parks, W.C., Matrix metalloproteinases in repair. Wound Repair Regen, 1999. 7(6): p. 423-32.
10. Nix, D., R.A. Bryant, and D.P. Nix, Acute & Chronic Wounds: Current Management Concepts. 2012: Elsevier Mosby.
11. Woodhead Publishing Series in Biomaterials, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. xi-xvi.
12. Kawasumi, A., et al., Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Top Microbiol Immunol, 2013. 367: p. 33-49.
13. T Velnar, T.B., V Smrkolj, The Wound Healing Process: an Overview of the Cellular and Molecular Mechanisms. The Journal of International Medical Research, 2009. 37(5) 12: p. 1528-1542.
14. Abe, R., et al., Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol, 2001. 166(12): p. 7556-62.
15. Bellingan, G.J., et al., In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol, 1996. 157(6): p. 2577-85.
16. Gordillo, G.M. and C.K. Sen, Revisiting the essential role of oxygen in wound healing. Am J Surg, 2003. 186(3): p. 259-63.
17. Ulrich, D., et al., Effect of chronic wound exudates and MMP-2/-9 inhibitor on angiogenesis in vitro. Plast Reconstr Surg, 2005. 116(2): p. 539-45.
18. Diegelmann, R. and M. Evans, Wound Healing: An Overview of Acute, Fibrotic and Delayed Healing. Frontiers in bioscience : a journal and virtual library, 2004. 9: p. 283-9.
19. Levenson, S.M., et al., THE HEALING OF RAT SKIN WOUNDS. Ann Surg, 1965. 161(2): p. 293-308.
20. Cullen, B., et al., The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol, 2002. 34(12): p. 1544-56.
21. Wysocki, A.B., L. Staiano-Coico, and F. Grinnell, Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol, 1993. 101(1): p. 64-8.
22. Rayment, E.A., Z. Upton, and G.K. Shooter, Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol, 2008. 158(5): p. 951-61.
23. Shian, S.G., et al., Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram. Mol Pharmacol, 2003. 64(5): p. 1076-84.
24. Lobmann, R., et al., Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J Diabetes Complications, 2006. 20(5): p. 329-35.
25. Nguyen, T.T., S. Mobashery, and M. Chang, Roles of Matrix Metalloproteinases in Cutaneous Wound Healing, in Wound Healing-New insights into Ancient Challenges. 2016, InTech.
26. Vincenti, M.P., The Matrix Metalloproteinase (MMP) and Tissue Inhibitor of Metalloproteinase (TIMP) Genes, in Matrix Metalloproteinase Protocols, I.M. Clark, Editor. 2001, Humana Press: Totowa, NJ. p. 121-148.
27. Mast, B.A. and G.S. Schultz, Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen, 1996. 4(4): p. 411-20.
28. Turner, N.J. and S.F. Badylak, The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds. Adv Wound Care (New Rochelle), 2015. 4(8): p. 490-500.
29. 游朝慶, 抗菌敷料主要競爭廠商之專利分析. 2009.
30. Zhao, Y., et al., Glucose Oxidase-Loaded Antimicrobial Peptide Hydrogels: Potential Dressings for Diabetic Wound. J Nanosci Nanotechnol, 2020. 20(4): p. 2087-2094.
31. Hamm, R., Text and Atlas of Wound Diagnosis and Treatment. 2014: McGraw Hill Professional.
32. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2012. 64: p. 18-23.
33. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015. 6(2): p. 105-121.
34. Kamoun, E.A., et al., Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 2015. 8(1): p. 1-14.
35. Sridhar, B.V., et al., Tissue Engineering: Development of a Cellularly Degradable PEG Hydrogel to Promote Articular Cartilage Extracellular Matrix Deposition (Adv. Healthcare Mater. 5/2015). Advanced Healthcare Materials, 2015. 4(5): p. 635-635.
36. Li, J. and D.J. Mooney, Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016. 1(12): p. 16071.
37. Khan, F., M. Tanaka, and S.R. Ahmad, Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 2015. 3(42): p. 8224-8249.
38. Huang, Q., et al., Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chemical Society Reviews, 2017. 46(20): p. 6255-6275.
39. Spicer, C.D., Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polymer Chemistry, 2020. 11(2): p. 184-219.
40. Wichterle, O. and D. LÍM, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118.
41. Cai, Z., et al., Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Adv Healthc Mater, 2019. 8(13): p. e1900013.
42. Yoshii, E., Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity. monomer structures and cytotoxicity, 1996.
43. Kumar, A. and S.S. Han, PVA-based hydrogels for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017. 66(4): p. 159-182.
44. Pan, Y.-S., D.-S. Xiong, and R.-Y. Ma, A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear, 2007. 262(7): p. 1021-1025.
45. Miao, T., et al., Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. Journal of Materials Chemistry B, 2015. 3(48): p. 9242-9249.
46. Ben Halima, N., Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances, 2016. 6(46): p. 39823-39832.
47. Kobayashi, M. and H.S. Hyu, Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants. Materials, 2010. 3(4).
48. Tondera, C., et al., Gelatin-based Hydrogel Degradation and Tissue Interaction <i>in vivo</i>: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice. Theranostics, 2016. 6(12): p. 2114-2128.
49. Jaipan, P., A. Nguyen, and R.J. Narayan, Gelatin-based hydrogels for biomedical applications. MRS Communications, 2017. 7(3): p. 416-426.
50. Rodriguez, M.J., et al., Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials, 2017. 117: p. 105-115.
51. Shi, W., et al., Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Adv Mater, 2017. 29(29).
52. Angele, P., et al., Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A, 2009. 91(2): p. 416-27.
53. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
54. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
55. Freier, T., et al., Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 2005. 26(29): p. 5872-5878.
56. Rabea, E.I., et al., Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules, 2003. 4(6): p. 1457-1465.
57. Kim, K., et al., Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomaterials Science, 2013. 1(7): p. 783-790.
58. Botelho da Silva, S., et al., Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydrate Polymers, 2018. 186: p. 299-309.
59. Wade, L.G., organic chemistry eighth editions. 2013.
60. Bousfield, T.W., et al., Synthesis of amides from acid chlorides and amines in the bio-based solvent Cyrene™. Green Chemistry, 2019. 21(13): p. 3675-3681.
61. 王建國, 高分子合成新技術. 化學工業出版社.
62. Skoog, D.A.H., F. J.; Crouch, S. R. , Principles of Instrumental Analysis. 6 ed. ed. 2007: Thomson.
63. El - Azazy, M., Introductory Chapter: Infrared Spectroscopy - A Synopsis of the Fundamentals and Applications. 2018.
64. Sperling, L.H., Introduction to Physical Polymer Science. 4 ed. ed. 2006.
65. Harris, D.C., Quantitative Chemical Analysis. 6 ed. ed. 2003.
66. 邱正宇, 掃描式電子顯微鏡簡介. 國立成功大學奈米中心.
67. Sruti, D., K.D. Jiban, and B. Sampa, Enhancement of Proteolytic Activity of a Thermostable Papain-Like Protease. 2013.
68. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity International strandard, ISO 10993-5:2009(E), 2009: p. 1-42.
69. Wallin, R.F., A practical guide to ISO-10993-12-sample preparation and reference materials. International strandard, ISO 10993-12, 1998: p. 1-4.
70. Boateng, J. and O. Catanzano, Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J Pharm Sci, 2015. 104(11): p. 3653-3680.
校內:2025-08-19公開