| 研究生: |
張洺壽 Chang, Ming-Shou |
|---|---|
| 論文名稱: |
抗菌型鈣基骨泥製程及性質研究 Process and Properties of an Antibacterial Calcium-based Cement |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 硫酸鈣 、磷酸鈣 、骨水泥 、抗菌 |
| 外文關鍵詞: | calcium sulfate, calcium phosphate, bone cement, antibacterial |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前由CMRT(Cana Material Research Team)經多年努力開發之鈣基骨泥(Calcium-Based Cement,CBC)具有優越的操作性、物化性質、生物相容性及骨引導性。而為了進一步降低在牙科及骨科手術上遭受細菌感染的風險,一般的應對方式是施予患者抗生素以抑制細菌的生長,但抗生素卻容易使細菌產生抗藥性以及容易對人體造成負擔等副作用。有鑒於此,本實驗室開始以添加抗菌因子至骨水泥中做為研究方向。抗菌因子A長期用於牙科,其可釋放鹼性使周圍環境pH快速升高以抑制細菌的生長,其釋放之離子也有研究指出可以刺激骨細胞分泌骨質。因此本研究選擇以抗菌因子A為添加至CBC的抗菌因子。
在前期研究中,直接添加抗菌因子A細粉至CBC所得到的抗菌骨泥性質並不理想;其中,當此抗菌骨泥浸泡至人工體液時,會因抗菌因子A快速溶解釋出離子而與人工體液中之離子產生大量析出物,為了避免析出物可能於未來植入時有造成血管栓塞的風險,開始進行抗菌因子A粉末的改質與後續添加至CBC的研究。
研究成果發現,將抗菌因子A與粉末H與純水混合、加壓成形後而得之A-D複合物,加入CBC後可以有效改善先前大量析出物生成的問題,並且搭配適當的液粉比可以有良好的注射性與崩解性,在24小時也可提供足夠的抗壓強度。在生物實驗方面,擁有良好抗菌性。
The calcium phosphate/calcium sulfate composite developed by CMRT(Cana Materials Research Team) has a excellent physical properties, chemical properties and biocompatibility. Generally, antibiotics are added to bone substitute to decrease the postoperative infection rate.
In our study, we chose substance A as the antibacterial addictive. We found that the addition of substance A though enhanced the antibacterial capacity, it produced white precipitation in SBF (Hanks’ solution and PBS).Such precipitation may cause thrombosis. To solve this problem, we try to modify particle size by binding substance A powder and powder-H to become a composite particle to lower the dissolution rate of substance A. The results showed that the addition of the composite particle do not produced precipitation in SBF. By the way, it also attains enough mechanical strength without dispersion. In the aspect of biology, it not only got enough antibacterial capacity, but also good biocompatibility proved by cytotoxicity experiments.
Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., . . . Schnettler, R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18), 4383-4391.
Bauer, T. W., & Muschler, G. F. (2000). Bone graft materials: an overview of the basic science. Clinical Orthopaedics and Related Research®, 371, 10-27.
Bohner, M. (2004). New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures. Biomaterials, 25(4), 741-749.
Chow, L. (2001). Calcium phosphate cements Octacalcium Phosphate (Vol. 18, pp. 148-163): Karger Publishers.
Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., . . . Harman, D. (1987). Oxygen radicals and human disease. Annals of internal medicine, 107(4), 526-545.
Dorozhkin, S. V. (2007). Calcium orthophosphates. Journal of materials science, 42(4), 1061-1095.
Gbureck, U., Knappe, O., Grover, L. M., & Barralet, J. E. (2005). Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials, 26(34), 6880-6886.
Hu, G., Xiao, L., Fu, H., Bi, D., Ma, H., & Tong, P. (2010). Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. Journal of Materials Science: Materials in Medicine, 21(2), 627-634.
Hulbert, S., Hench, L., Forbers, D., & Bowman, L. (1982). History of bioceramics. Ceramics international, 8(4), 131-140.
Imlay, J. A., & Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240(4857), 1302-1309.
Miller, M. D., Thompson, S. R., & Hart, J. (2012). Review of Orthopaedics E-Book: Elsevier Health Sciences.
Moore, W. R., Graves, S. E., & Bain, G. I. (2001). Synthetic bone graft substitutes. ANZ journal of surgery, 71(6), 354-361.
Moseke, C., & Gbureck, U. (2010). Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 6(10), 3815-3823.
Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888-3903.
Nilsson, M., Fernandez, E., Sarda, S., Lidgren, L., & Planell, J. (2002). Characterization of a novel calcium phosphate/sulphate bone cement. Journal of Biomedical Materials Research Part A, 61(4), 600-607.
Peltier, L. F., Bickel, E. Y., Lillo, R., & Thein, M. S. (1957). The use of plaster of Paris to fill defects in bone. Annals of surgery, 146(1), 61.
Posner, A. S., & Betts, F. (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Accounts of Chemical Research, 8(8), 273-281.
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: an introduction to materials in medicine: Elsevier.
Shepperd, J. (2004). The early biological history of calcium phosphates Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty (pp. 3-8): Springer.
Shi, Z., Neoh, K., Kang, E., & Wang, W. (2006). Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 27(11), 2440-2449.
Singh, N., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53(1), 57-77.
Song, H.-Y., Rahman, A. E., & Lee, B.-T. (2009). Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. Journal of Materials Science: Materials in Medicine, 20(4), 935-941.
SUZUKI, O., NAKAMURA, M., MIYASAKA, Y., KAGAYAMA, M., & SAKURAI, M. (1991). Bone formation on synthetic precursors of hydroxyapatite. The Tohoku journal of experimental medicine, 164(1), 37-50.
Thomas, M. V., & Puleo, D. A. (2009). Calcium sulfate: properties and clinical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88(2), 597-610.
Urban, R. M., Turner, T. M., Hall, D. J., Inoue, N., & Gitelis, S. (2007). Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clinical orthopaedics and related research, 459, 110-117.
Van Lieshout, E. M., Van Kralingen, G. H., El-Massoudi, Y., Weinans, H., & Patka, P. (2011). Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC musculoskeletal disorders, 12(1), 34.
Voet, D., & Voet, J. G. (1995). Biochemistry. New York: J. NY: John.
Williams, D., Black, J., & Doherty, P. (1992). Biomaterial-tissue interfaces. Paper presented at the Concensus report of second conference on definitions in biomaterials. Elsevier, Amsterdam.
Yin, X., & Stott, M. (2005). Theoretical insights into bone grafting silicon-stabilized α-tricalcium phosphate. The Journal of chemical physics, 122(2), 024709.
校內:2023-09-01公開