| 研究生: |
林梓淞 Lin, Tzyy-Song |
|---|---|
| 論文名稱: |
以迅速法對鹼-骨材反應確認之研究 Study on the rapid method for identification of the alkali aggregate reaction |
| 指導教授: |
王櫻茂
Wang, In-Maung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 鹼-骨材反應 、化學法 、迅速法 、水泥砂漿棒法 |
| 外文關鍵詞: | mortar bar method, chemistry method, rapid method, alkali aggregate reaction |
| 相關次數: | 點閱:47 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於使用不同的鹼-骨材反應試驗可能產生相異的判斷結果,針對這項缺失,本研究使用ASTM C289(化學法)、ASTM C227與JIS A5308附錄8(水泥砂漿棒法)對於不同來源的骨材進行鹼-骨材反應試驗,綜合上述試驗所得之結果再利用JIS A1804(迅速法)作為最終的確認。試驗結果顯示,ASTM C289有低估的現象,ASTM C227及JIS A5308附錄8在相同鹼含量(Na2Oeq.=2.5%)作用下,其結果與JIS A1804相當類似。因此,可運用JIS A1804快速及簡便的特性,來確認骨材的反應潛能。
根據ASTM C227及JIS A5308附錄8試驗結果顯示,兩種試驗在低鹼含量(1.2%及1.38%)及高鹼含量(2.5%)作用下其結果不盡相同,判斷可能是兩種試驗所用的W/C及S/C不同所產生的影響。
由研究中證實,添加50%的日本新標準砂作為拌和用添加料確實可誘發骨材的反應潛能。惟日本新標準砂在國內的使用並不普遍且價格相當昂貴,針對這項缺失,嘗試採用經試驗證實為無危害性的渥太華標準砂及苗栗石英砂,暫時取代JIS A1804規定使用的日本新標準砂作為拌和用添加料。由試驗結果顯示,渥太華標準砂的取代性較苗栗石英砂佳,若僅以超音波傳播速率來判斷鹼-骨材反應,仍可準確的評估試驗結果。
Using the different alkali-aggregate reaction test may generate dissimilar judgements, aim at this defect , this research use the chemistry method(ASTM C289), the mortar bar method(ASTM C227 and JIS A5308 Annex 8)carry on the alkali-aggregate reaction test in different sources of aggregate , then use the rapid method(JIS A1804)to do the final confirmation from above method. The test results show that the chemistry method has the underestimate phenomenon, the mortar bar method in the same alkali content (Na2Oeq. =2.5%) is similar with the rapid method. Therefore, we can use the fast and simple characteristic of the rapid method to confirm the reaction of the aggregate.
According to the test result of the mortar bar methods, which under the low alkali contents (1.2% and 1.38%) and the high alkali content (2.5%), the results are not the same, it may cause by these two tests use the different W/C and S/C.
Verification by researching, adding 50% new Japan standard sand to be the mixing materials can advance the reactive potential of aggregate. However, the Japan new standard sand is not widespread in the domestic usage and the price is really expensive. For this flaw, try to use the Ottawa standard sand and Miaoli Quartz sand, which were proved innocuously, replace with the new Japan standard sand in the rapid method to be the mixing materials. The result shows, the replacement of the Ottawa standard is better than the Mioli Quartz sand, if only use ultrasonic wave propagation velocity rate to decide the reactive potential of aggregate, still can precise judge the test result.
參考文獻
1.王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,台灣地區鹼-骨材反應特性之研究,行政院國科會專題研究報告,NSC78-0410-E0006-20,共98頁,(1989)。
2.王櫻茂、吳振成、楊宏儀、田永銘、許智能,以波索蘭混合材料防制鹼-骨材反應(一),行政院國科會專題研究報告,NSC79-0410-E0006-32,共98頁,(1990)。
3.王櫻茂、吳振成、楊宏儀、田永銘、許智能,以波索蘭混合材料防制鹼-骨材反應(二),行政院國科會專題研究報告,NSC80-0410-E0006-27,共101頁,(1991)。
4.王櫻茂、吳振成,制定混凝土耐久性試驗方法及規範研究,內政部建築研究所籌備處研究計劃成果報告,計劃編號:MOIS 840018,(1995)。
5.田永銘,楊世和,台灣東部反應性骨材之探討及分析,日本,第13-26頁,(1997)。
6.西林新藏,成功大學演講記錄,(1993)。
7.李釗,花蓮港區混凝土構造物鹼骨材反應調查報告,省交通處港灣技術研究所研究報告,(1998)。
8.林晏吉,花東地區鹼-骨材反應之成因探討,國立中央大學土木工程研究所,碩士論文,(1999)。
9.枷場,川村,岡田:關於鹼骨材反應之基礎研究,材料Vol.26 No.290, pp.1078-1084, (1977).
10.陳仁達,花東地區鹼-骨材反應之防治方法,國立中央大學土木工程研究所,碩士論文,(1998)。
11.張大鵬,混凝土動彈性係數,土木水利,Vol.25, No.3, pp.40-50, (1998).
12.張文恭,花蓮地區單一岩種之鹼-骨材反應研究,國立中央大學應用地質研究所,碩士論文,(2000)。
13.楊世和,台灣東部反應性骨材之探討及分析,國立中央大學土木工程研究所,碩士論文,(1997)。
14.經濟部礦務局,八十八年度砂石產銷調查計劃報告,共152頁,台北,(1999)。
15.廖肇昌,蕭興臺,混凝土內骨材鹼性反應之特性及其對鋼筋混凝土構件之影響:結構工程,第8卷1期,第25-40頁。
16.賴武德,台灣西部河川砂石及北部地區安山岩之鹼-骨材反應潛能研究,國立中央大學應用地質研究所,碩士論文,(2001)。
17.AASHTO T299-93, Standard Method of Test for Rapid Identification of Alkali Silica Reaction Products in Concrete, (1998).
18.AASHTO T303-93, Standard Method of Test for Rapid Identification of Alkali Silica Reaction Products in Concrete, (1998).
19.ASTM C227-97a, Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations(Mortar-Bar Method), (1998).
20.ASTM C289-94, Standard Test Method for Potential Alkali-Carbonate Reactivity of Aggregates(Chemical Method), (1998).
21.ASTM C295-90, Standard Guide for Petrographic Examination of Aggregate for Concrete, (1998).
22.ASTM C856-95, Standard Practice for Petrographic Examination of Hardened Concrete, (1998).
23.ASTM C1260-94, Standard Test Method for Potential Alkali Reactivity of Aggregates(Mortar-Bar Method), (1998).
24.ASTM C1293-95, Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction, (1998).
25.Berube, M. A. and Fourier, B., Canadian Experience with Testing for Alkali-Aggregate Reactivity in Concrete, Cement, Concrete, and Aggregates, Vol.15,pp.27-47, (1993).
26.Carrasquillo, R. L., P. G. Snow, Effect of Fly Ash on Alkali-Aggregate Reaction in Concrete, ACI. Materials Journal, pp.299-305, (1987).
27.Chatterji, S., Mechanisms of alkali-silica reaction and expansion, Proc., 8th Int. Conf. On Alkali-Aggregate Reaction, Kyoto, Japan, pp.101-105, (1989).
28.Criaud, A. and G. Cadoret, HPCS and Alkali Silica Reaction-The Double Role of Pozzolanic Materials, High Performance Concrete from Material to Structure, pp.295-304, (1992).
29.CSA A23.2-25A, Test Method for Detection of Alkali-Silica Reactive Aggregate by Accelerated Expansion of Mortar Bars, June (1994).
30.CSA A223.2-14A, Potential Expansivity of Aggregates(Procedure for Length Change Due to Alkali-Aggregate Reaction in Concrete Prisms), June (1994).
31.Dent Glasser, L. S., Osmotic Pressure and the Swelling of Gels, Cement and Concrete Research, Vol.9, Iss.4, pp.515-517, (1979).
32.Deng, M., Xu, Z., Lan, X., S., and Tang M., Railway ties affected by aggregate reactions, 10th International construction and engineering Melbourne. pp.265-270, (1996).
33.Fournier, B. and Berube, M. A., Application of the NBRI Accelerated Mortar Bar Test to Siliceous Carbonate Aggregates Produced in the St. Lawrence Lowlands(Quebec, Canada)-Part 1: Influence of Various Parameters on the Test Results. Cement and Concrete Research, Vol.21, No.5, pp.853-862, (1991).
34.Fournier, B. and Berube, M. A., Application of the NBRI Accelerated Mortar Bar Test to Siliceous Carbonate Aggregates Produced in the St. Lawrence Lowlands(Quebec, Canada)-Part 2: Proposed Limits, Rates of Expansion, and Microstructure of Reaction Products. Cement and Concrete Research, Vol.21, No.6, pp.1069-1082, (1991).
35.Frederick, J. R., Ultrasonic Engineering, John-Wily & Sons, Inc., (1965).
36.Fujii, M., T. Miyagawa, M. Tomita and M. Imae, Effect of Coating to Inhibit AAR of Concrete Structures, Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp.869-874, (1989).
37.Gillott, J. E., Alkali-Aggregate Reaction in Concrete, Engineering Geology, Vo1.9, pp.303-326, (1975).
38.Gillott, J. E., Practical Implications of the Mechanisms of Alkali-Aggregate Reactions, Symp. On Alkali-Aggregate Reaction, Preventative Measures, Reykjavik, pp.213-230, (1975).
39.Guthrie, Jr., George D., and Carey, J. W., A simple Environmentally Friendly, and Chemically Specific Method for The Identification and Evaluation of The Alkali-Silica Reaction, C.C.R., 27:pp.1407-1417, (1997).
40.Hadley, D. W., Alkali Reactivity of Dolomitic Carbonate Rocks, Highway. Res. Rec., Vol.45, pp.1-17, (1964).
41.Hobbs, D. W., Expansion of Concrete due to Alkali-Silica Reaction: on Explanation , Magazine of Concrete Res., Vol.30 No.105, pp.215-220, (1978).
42.Hobbs, D. W., Alkali-Silica Research in Concrete, Thomas Telford, London, pp.1-32, (1988).
43.Hobbs, D. W., Alkali-Silica Reaction in Concrete , Thomas Telford, London, (1988).
44.Hooton, R. D. and Rogers, C. A., Development of the NBRI rapid mortar bar leading to its use in North America, Construction and Building Materials, Vol.7, No.3, pp.145-148, (1993).
45.Hansen, W.C., Studies Relating to the Mechanism by which the Alkali Aggregate Reaction Produces Expansion in Concrete, J. Am. Concr. Inst., Vol.15, pp.213-227, (1944).
46.Jeneson, A. D., Christensen S., and Thaulow N., Studies of Alkali-Silica Reaction Part II Effect of Air Entrainment on expansion, Cement and Concrete Research, Vol.14, pp.331-334, (1984).
47.JIS A5308, レディーミクストコソクリート附錄8(規定)骨材のアルカリシリカ反応性試驗方法(モルタルバー法)。
48.JIS A1804, コソクリート生產工程管理用試驗方法-骨材のアルカリシリカ反応性試驗方法(迅速法)。
49.JIS A1804,コソクリート生產工程管理用試驗方法-骨材のアルカリシリカ反応性試驗方法(迅速法)解說。
50.Lenzner, D. and V. Luedwig, The Alkali Aggregate Reaction with Opaline Sand Stone from Schleswig Holstein, Proc. 4th Int. Conf. On Effects of Alkalies in Cement and Concrete, pp.11-34, (1978).
51.Lee, C., Available Alkalis in Fly and Their Effects on Alkali-Aggregate Reaction, Ph.D. Dissertation, University of Iowa State, (1986).
52.Ludmila, D. M., Handbook of Concrete Aggregates, Noyes Publications, Park Ridge, New Jersey, U.S.A, (1983).
53.MacNeill, S. G., Langley, W. S., and Soles, James A., Alkali-Reactive Aggregates in Nova Scotia: CANMET Studies of their Distribution and Control of the Reactivity, Cement & Concrete Composites, Vol.15, pp.7-12, (1994).
54.McCoy, W. J., Effect of Hydration on Water Solubility of Ions in Portland Cement, Martin Marietta Corp., U.S.A., pp.35-46, (1978).
55.Meyers, M. A., Dynamics Behaviors of Materials, John-Wily & Sons, Inc., (1994).
56.Nixon, Collins and Rayment, The Concentration of Alkalies by Moisture Migration in Concrete-A Factor Influencing Alkali Aggregate Reaction, Cement and Concrete Research Vol.9, (1979).
57.Oberholster, R. E., and Davies, G., An Accelerated Method for Testing the Potential Alkali Reactivity of Siliceous Aggregates, Cement and Concrete Research, Vol.16, pp.181-189, (1986).
58.Ohama, Y., K. Demura and D. Suzuki, Evaluation of Alkali-Silica Reaction Inhibitors by Partial Immersion Test of Concrete in 2.5% NaCl Solution, ICAAR 10th Internationl Conference, (1996).
59.Ono, K., Assessment and Repair of Damaged Concrete Structure, Proceedings of the 8th International Conference on Alkali-Aggregate Reaction. Kyoto, pp.647-658,(1989).
60.Osamu Kato, Susumu Moriya, Hiroyuki Chino, Kunio Ishikawa, Kiyoshi Katawaki, Study on analytical techniques for improving the chemical method, 8th International Conference on Alkali-Aggregate Reaction, Kyoto, Japan, pp.469-473, (1989).
61.Powers, T. C. and H. H. Steinouer, An interpretation of some published researches on the alkali-aggregate reaction part 2, Journal of ACI., Vol.51, pp.785-811, (1955).
62.Stanton, T. E., The expansion of concrete through reaction between cement and concrete, Proceeding American Society of Civil Engineers, Vo1.66, pp.1781-1811, (1940).
63.Stark, David, C., Lithium Salt Admixtures-an alternative Method to Prevent Expansion Alkali-Silica Reactivity, Portland Cement Association, (1992).
64.Stark, D., Handbook for the Identification of Alkali-Silica Reactivity in Highway Structures, National Research Council, Washington, (1991).
65.Swenson, E. G. A reaction aggregates undetected by ASTM tests, ASTM Bull.226, pp.48-50, (1957).
66.Swamy, R. N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
67.Swamy, R. N., Assessment and Rehabilitation of AAR-affected Structures, Cement and Composites, Vol.19, pp.427-440, (1997).
68.SHRP-C-342, Alkali Silica Reactivity: An Overview of Research, Strategic Highway Research Program, (1993).
69.Tang, M. S., S. E. Han and S. E. Zhen, A Rapid Method for Identification of Alkli Reactivity of Aggregate, Cement and Concrete Research, pp.417-422, (1983).
70.Tamuru, H., Hoshino, Y., Saito, H., Review of Cement Association of Japan, Vol.38, pp.100-103, (1984).
71. Tamuru, H., Hoshino, Y., Saito, H., Takahashi, T., Proc. Of Annual Conv. AIJ, pp.27-28, (1984).
72. Tamuru, H., Takahashi, T., GBRC, Vol.11, No.1, pp.20-27.
73.Van Aardt, J. H. P., and Visser, S., Formation of Hydrogarnets: Calcium Hydroxide Attack on Clays and Feldspars, Cement and Concrete Research, Vol.7, pp.39-44, (1977).
74.Van Aardt, J. H. P., and Visser, S., Reaction of Ca(OH)2 and of Ca(OH)2+CaSO4•2H2O at Various Temperatures with Feldspars in Aggregates in Aggregate used for Concrete Making, Cement and Concrete Research, Vol.8, pp.677-681, (1978).
75.Van Aardt, J. H. P., and Visser, S., Calcium hydroxide attack on felspars and clays: possible relevance to cement-aggregate reaction, Cement and Concrete Research, Vol.7, pp.643-648, (1977).
76.Wang, H., S. Tysl and J. E. Gillott, Practical Implications of Lithium-Based Chemicals and Admixtures in Controlling Alkali-Aggregate Reactions, pp.353-366.
77.Wang. J., M. Humphrey and D. Bayer, Concrete of ASR Expansion by Coatings, ICAAR 10th International Conference, pp.622-629, (1996).
78.Xu, Z. and R. D. Hooton, Migration of Alkali Ions in Mortar Due to Several Mechanisms, Cement and Concrete Research, Vol.23, pp.951-961, (1993).